Skip to main content
Log in

Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Monascus ruber, a red mold species, has been widely used in the fields of food and medicine. In this research, we transformed Monascus ruber spores using Agrobacterium tumefaciens as a tool for random insertional mutagenesis with the hygromycin phosphotransferase gene as the selected marker. Three types of mutants including citrinin-producing mutants, mutants with abnormal aerial hyphae and pigment change mutants were screened for molecular analysis. Southern blot analysis showed that more than 83.3% of transformants contained single T-DNA insertions. The genomic DNA segments of the transformants flanking the T-DNA could be amplified from their left borders with TAIL-PCR. Homologous comparison using the Blast tool showed that none of the isolated DNA sequences had any similarity to each other, suggesting that the T-DNA was randomly integrated into the fungal genome, which provided the hypothetical reason for the variant phenotypes of the transformants. The successful creation of transformants with a single T-DNA tag insertion may help us to clone functional genes related to the metabolism and differentiation of Monascus spp., which will greatly facilitate the molecular analysis of this important fungus and the improvement of strains at the genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATMT:

Agrobacterium tumefaciens-mediated T-DNA transformation

TAIL-PCR:

Thermal asymmetric interlaced PCR

GABA:

γ-Aminobutyric acid

SON-PCR:

Single oligonucleotide nested PCR

References

  • Antal Z, Rascle C, Fèvre M et al (2004) Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags. Curr Genet 46:240–246. doi:10.1007/s00294-004-0524-6

    Article  CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Le Bars J et al (1995) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213. doi:10.1016/0168-1605(94)00167-5

    Article  CAS  Google Scholar 

  • Bumpus JA, Trax M, Reisdorph A et al (2008) An in silico analysis of cytochrome c from Phanerochaete chrysosporium: its amino acid sequence and characterization of gene structural elements. In Silico Biol 8(1):1–13

    CAS  Google Scholar 

  • Chen F, Hu X (2005) Study on red fermented rice with high concentration of Monacolin K and low concentration of citrinin. Int J Food Microbiol 103:331–337. doi:10.1016/j.ijfoodmicro.2005.03.002

    Article  CAS  Google Scholar 

  • Detlef W, Jane G (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Ding Y, Shao Y, Xu Y et al (2006) Screening Citrinin mutants from the transformants library of Monascus ruber M-7 by Agrobacterium-mediated DNA transfer. Microbiol Chin 33(4):52–57

    Google Scholar 

  • Fu JQ (1997) Production and application of red yeast rice (Chinese). Light Industry Press, Beijing

    Google Scholar 

  • Fu G, Xu Y, Li Y et al (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16(suppl 1):137–142

    CAS  Google Scholar 

  • Gheith O, Sheashaa H, Abdelsalam M et al (2008) Efficacy and safety of Monascus purpureus Went rice in subjects with secondary hyperlipidemia. Clin Exp Nephrol 12:189–194. doi:10.1007/s10157-008-0033-x

    Article  Google Scholar 

  • Hajjaj H, Klaébé A, Loret MO et al (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65(1):311–314

    CAS  Google Scholar 

  • Karunakaran M, Nair V, Rho HS et al (2008) Agrobacterium tumefaciens-mediated transformation in Colletotrichum falcatum and C. acutatum. J Microbiol Biotechnol 18(2):234–241

    Google Scholar 

  • Kim JG, Choi YD, Chang YJ et al (2003) Genetic transformation of Monascus purpureus DSM1379. Biotechnol Lett 25:1509–1514. doi:10.1023/A:1025438701383

    Article  CAS  Google Scholar 

  • Lakrod K, Chaisrisook C, Daniel ZS (2003a) Transformation of Monascus purpureus to hyromycing B resistance with cosmid pMOcosX reduces fertility. Electron J Biotechnol 6(2):143–147

    Google Scholar 

  • Lakrod K, Chaisrisook C, Skinner DZ (2003b) Expression of pigmentation genes following electroporation of albino Monascus purpureus. J Ind Microbiol Biotechnol 30:369–374. doi:10.1007/s10295-003-0058-9

    Article  CAS  Google Scholar 

  • Lamarre C, Ibrahim-Granet O, Du C et al (2007) Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genet Biol 44:682–690. doi:10.1016/j.fgb.2007.01.009

    Article  CAS  Google Scholar 

  • Li MX, Gong XY, Zheng J et al (2005) Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiol Lett 243:323–329. doi:10.1016/j.femsle.2004.12.033

    Article  CAS  Google Scholar 

  • Li YP, Tan WH, Xu Y (2007) Transformation of protoplast Monascus aurantiacus AS3.4384. Food Sci (Chinese) 28(10):317–321

    CAS  Google Scholar 

  • Lin YL, Wang TH, Lee MH, Su NW (2008a) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973. doi:10.1007/s00253-007-1256-6

    Article  CAS  Google Scholar 

  • Lin CP, Chen YH, Chen JW et al (2008b) Cholestin (Monascus purpureus rice) inhibits homocysteine- induced reactive oxygen species generation, nuclear factor-κB activation, and vascular cell adhesion moleculer expression in human aortic endothelial cells. J Biomed Sci 15:183–196. doi:10.1007/s11373-007-9212-0

    Article  CAS  Google Scholar 

  • Mandt M (1998) Legal opinion on the use of red yeast rice(Angkak) in food. Paper collection for a symposia of Monascus cultures and applications, held from July 8th to 10th, 1998 in Toulouse, France (Monascus purpureus)

  • Michielse CB, Hooykaas PJ, van den Hondel CA et al (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17. doi:10.1007/s00294-005-0578-0

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J, Gonzalez-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEM Yeast Res 1(4):247–256. doi:10.1111/j.1567-1364.2002.tb00042.x

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NewYork

    Google Scholar 

  • Shao YC, Wang RY, Ding YD, Chen FS, Xie BJ (2006) Construction of T-DNA insertional library of Monascus mediated by Agrobacterium tumefaciens and characteristic analysis of the color mutants. Mycosystema (Chinese) 25(2):247–255

    CAS  Google Scholar 

  • Shao YC, Ding YD, Chen FS et al (2007) Isolation of DNA sequence flanking T-DNA by thermal asymmetric interlaced PCR from Monascus pigment producing mutants. Microbiology (Chinese) 34(2):323–326

    CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Ishihara S et al (2005) Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 7:3453–3457. doi:10.1128/AEM.71.7.3453-3457.2005

    Article  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 73(16):5097–5103. doi:10.1128/AEM.01979-06

    Article  CAS  Google Scholar 

  • Sonia C, Flor P, Martin JF et al (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet 43:447–452. doi:10.1007/s00294-003-0417-0

    Article  Google Scholar 

  • Talhinhas P, Muthumeenakshi S, Martins JN et al (2008) Agrobacterium-mediated transformation and insertional mutagenesis in Colletotrichum acutatum for investigating varied pathogenicity lifestyles. Mol Biotechnol 39:57–67. doi:10.1007/s12033-007-9028-1

    Article  CAS  Google Scholar 

  • Tanaka T, Tateno Y, Gojobori T (2005) Evolution of vitamin B6 (pyridoxine) metabolism by gain and loss of genes. Mol Biol Evol 22(2):243–250. doi:10.1093/molbev/msi011

    Article  CAS  Google Scholar 

  • Wang JY, Li HY (2008) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic fungus Penicillium digitatum. J Zhejiang Univ Sci B 9:823–828. doi:10.1631/jzus.B0860006

    Article  CAS  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2004) Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on Rice Culture. J Agric Food Chem 52:6977–6982. doi:10.1021/jf049783o

    Article  CAS  Google Scholar 

  • Wieser J, Lee BN, John W, Fondon THIII (1994) Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet 27:62–69. doi:10.1007/BF00326580

    Article  CAS  Google Scholar 

  • Yang YJ, Lee I (2008) Agrobactrium tumefaciens-mediated transformation of Monascus ruber. J Microbiol Biotechnol 18(4):754–758

    Google Scholar 

  • Yu JH (2006) Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44(2):145–154

    CAS  Google Scholar 

  • Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458. doi:10.1146/annurev.phyto.43.040204.140214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Daohong Jiang for his technical assistance and for kindly providing pTFCM for this experiment. This work was financially supported by the National High Technology Research and Development Program of the People’s Republic of China (863 program:No2006AA10Z1A3) and the Financial Aid Program for New Century Talents by the Ministry of Education of the People’s Republic of China (NoNCET-05-0667)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Y., Ding, Y., Zhao, Y. et al. Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber . World J Microbiol Biotechnol 25, 989–995 (2009). https://doi.org/10.1007/s11274-009-9977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-9977-6

Keywords

Navigation