Skip to main content
Log in

Quantification of In Situ Denitrification Rates in Groundwater Below an Arable and a Grassland System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Understanding denitrification rates in groundwater ecosystems can help predict where agricultural reactive nitrogen (N) contributes to environmental degradation. In situ groundwater denitrification rates were determined in subsoil, at the bedrock interface and in bedrock at two sites, grassland and arable, using an in situ ‘push–pull’ method with 15N-labelled nitrate (NO3 –N). Measured groundwater denitrification rates ranged from 1.3 to 469.5 μg N kg−1 day−1. Exceptionally high denitrification rates observed at the bedrock interface at grassland site (470 ± 152 μg N kg−1 day−1; SE, standard error) suggest that deep groundwater can serve as substantial hotspots for NO3 –N removal. However, denitrification rates at the other locations were low and may not substantially reduce NO3 –N delivery to surface waters. Denitrification rates were negatively correlated with ambient dissolved oxygen, redox potential, k s and NO3 (all p values, p < 0.01) and positively correlated with SO4 2− (p < 0.05). Higher mean N2O/(N2O + N2) ratios at an arable (0.28) site than the grassland (0.10) revealed that the arable site has higher potential to indirect N2O emissions. Identification of areas with high and low denitrification and related site parameters can be a tool to manage agricultural N to safeguard the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addy, K., Kellogg, D. Q., Gold, A. J., Groffman, P. M., Ferendo, G., & Sawyer, C. (2002). In situ push-pull method to determine groundwater denitrification in riparian zones. Journal of Environmental Quality, 31, 1017–1024.

    Article  CAS  Google Scholar 

  • Askew, F. E., & Smith, R. K. (2005). Inorganic non-metallic constituents, 4500-SO4 2−; Sulphate; Method 4500-SO4 2− E. Turbimetric method. In Eaton et al. (Eds.), Standard methods for the examination of waters and waste water (21st ed., pp. 4–188). NW Washington: American Public Health Association. ISBN 0-87553-047-8 (2001–3710).

    Google Scholar 

  • Barrett, M., Jahangir, M. M. R., Lee, C., Smith, C. J., Bhreathnach, N., Collins, G., Richards, K. G., & O’Flaherty, V. (2013). Abundance of denitrification genes under different piezometer depths in four Irish agricultural groundwater sites. Environmental Science & Pollution Research, 20, 6646–6657.

    Article  CAS  Google Scholar 

  • Blackmer, A. M., & Bremner, J. M. (1978). Inhibitory effect of nitrate on reduction of nitrous oxide to molecular nitrogen by microorganisms. Soil Biology and Biochemistry, 10, 187–191.

    Article  CAS  Google Scholar 

  • Böhlke, J. K., Verstraeten, I. M., & Kraemer, T. F. (2007). Effects of surface-water irrigation on sources, fluxes, and residence times of water, nitrate, and uranium in an alluvial aquifer. Applied Geochemistry, 22, 152–174.

    Article  Google Scholar 

  • Bollmann, A., & Conrad, R. (1997). Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide. Soil Biology and Biochemistry, 29, 1067–1077.

    Article  CAS  Google Scholar 

  • Bouwer, H., & Rice, R. C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12, 423–428.

    Article  Google Scholar 

  • Buss, S. R., Rivett, A. R., Morgan, P., & Bemment, C. D. (2005). Attenuation of nitrate in the subsurface environment. England: Environment Agency Report.

    Google Scholar 

  • Clough, T. J., Addy, K., Kellogg, D. Q., Nowicki, B. L., Gold, A. J., & Groffman, P. M. (2007). Dynamics of nitrous oxide in groundwater at the aquatic–terrestrial interface. Global Change Biology, 13, 1528–1537.

    Article  Google Scholar 

  • Davidson, E. A., & Firestone, R. K. (1988). Measurement of nitrous oxide dissolved in soil solution. Soil Science Society of America Journal, 52, 1201–1203.

    Article  CAS  Google Scholar 

  • Deurer, M., Von der Heide, C., Bottcher, J., Duijnisveld, W. H. M., Weymann, D., & Well, R. (2008). The dynamic of N2O near the groundwater table and the transfer of N2O into the unsaturated zone: a case study from a sandy aquifer in Germany. Cataena, 72, 362–373.

    Article  Google Scholar 

  • EC (2002). Council Directive (2000/60/EEC) of the 23rd October 2000 on establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327/1, Brussels, Belgium.

  • Fenton, O., Richards, K. G., Khalil, M. I., & Healy, M. G. (2009). Factors affecting nitrate in shallow groundwater under a beef farm in South Eastern Ireland. Journal of Environmental Management, 90(10), 3135–3146.

    Article  CAS  Google Scholar 

  • Fenton, O., Schulte, R. P. O., Jordan, P., Lalor, S. T. J., & Richards, K. G. (2011). Time lag: a methodology for the estimation of vertical and horizontal travel and flushing timescales to nitrate threshold concentrations in Irish aquifers. Environmental Science and Policy, 14(4), 419–431.

    Article  CAS  Google Scholar 

  • Fitzsimon, V. P., & Misstear, B. D. R. (2006). Estimating groundwater recharge through tills: a sensitivity analysis of soil moisture budgets and till properties in Ireland. Hydrogeology Journal, 14, 548–561.

    Article  Google Scholar 

  • Francis, A. J., Slater, J. M., & Dodge, C. J. (1989). Denitrification in deep sub-surface sediments. Geomicrobiology Journal, 7, 103–106.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Ground water. New Jersey: Prentice Hall.

    Google Scholar 

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., & Vorosmarty, C. J. (2004). Nitrogen cycles: past, present and future. Biogeochemistry, 70, 153–226.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the N cycle: recent trends, questions and potential solutions. Science, 320, 889–892.

    Article  CAS  Google Scholar 

  • Groffman, P. M., Gold, A. J., & Jacinthe, P. A. (1998). Nitrous oxide production in riparian zones and groundwater. Nutrient Cycling Agroecosystems, 52, 179–186.

    Article  CAS  Google Scholar 

  • Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., & Voytek, M. A. (2006). Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications, 16, 2091–2122.

    Article  Google Scholar 

  • Harrison, M. D., Groffman, P. M., Mayer, P. M., Kaushal, S. S., & Newcomer, T. A. (2011). Denitrification in alluvial wetlands in an urban landscape. Journal of Environmental Quality, 40, 634–646.

    Article  CAS  Google Scholar 

  • Ishizuka, S., Iswandi, A., Nakajima, Y., Yonemura, S., Sudo, S., Tsuruta, H., & Muriyarso, D. (2005). Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutrient Cycling in Agroecosystems, 71, 55–62.

    Article  CAS  Google Scholar 

  • Istok, J. D., Humphrey, M. D., Schroth, M. H., Hyman, M. R., & O’Reilly, K. T. (1997). Single-well, “push-pull” test for in situ determination of microbial activities. Ground Water, 35, 619–631.

    Article  CAS  Google Scholar 

  • Jahangir, M. M. R., Roobroeck, D., Van Cleemput, O., & Boeckx, P. (2011). Spatial variability and biophysicochemical controls on N2O emissions from differently tilled arable soils. Biology and Fertility of Soils, 47(7), 753–766.

    Article  CAS  Google Scholar 

  • Jahangir, M. M. R., Khalil, M. I., Johnston, P. M., Cardenas, L., Butler, M., Hatch, D., Barrett, M. M., O’Flaherty, V., & Richards, K. G. (2012a). Denitrification potential in subsoils: a mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems & Environment, 147, 13–23.

    Article  CAS  Google Scholar 

  • Jahangir, M. M. R., Johnston, P. M., Barrett, M., Khalil, M. I., Fenton, O., Boeckx, P., Groffman, P., & Richards, K. G. (2012b). Denitrification and indirect N2O emissions from groundwater: hydrologic and biogeochemical influences. Journal of Contaminant Hydrology, 152, 70–81.

    Article  Google Scholar 

  • Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E., & Cornwell, J. C. (1994). Membrane inlet mass spectrometer for rapid high precision determination N2, O2 and Ar in environmental water samples. Analytical Chemistry, 66, 4166–4170.

    Article  CAS  Google Scholar 

  • Kellogg, D. Q., Gold, A. J., Groffman, P. M., Addy, K., Stolt, M. H., & Blazejewski, G. (2005). In situ groundwater denitrification in stratified, permeable soils underlying riparian wetlands. Journal of Environmental Quality, 34, 524–533.

    Article  CAS  Google Scholar 

  • Kolle, W., Strebel, O., & Bottcher, J. (1985). Formation of sulphate by microbial denitrification in a reducing aquifer. Water Supply, 3, 35–40.

    Google Scholar 

  • Konrad, C. (2007). Methoden zur Bestimmung des Umsatzes von Stickstoff, dargestellt fur drei pleistozane Groundwasserleiter Nord-deutschlands, PhD thesis, Dresden University Of Technology, Germany, p. 157.

  • Lemon, E. (1981). Nitrous oxide in freshwaters of the Great Lakes basins. Limnology and Oceanography, 26, 867–879.

    Article  CAS  Google Scholar 

  • Linne von Berg, K. H., & Bothe, H. (1992). The distribution of denitrifying bacteria in soil monitored by DNA-probing. FEMS Microbiology Ecology, 86, 331–340.

    Article  CAS  Google Scholar 

  • Mathieu, O., Leveque, J., Heault, C., Milloux, M. J., Bizouard, F., & Andreux, F. (2006). Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biology and Biochemistry, 38, 941–951.

    Article  CAS  Google Scholar 

  • McGarrigle, M., Lucey, J., & Ó’Cinnéde, M. (2010). Water quality in Ireland 2007–2009. Synthesis report. Wexford: Environmental protection Agency.

    Google Scholar 

  • Misstear, B. D. R., Brown, L., & Johnston, P. M. (2009). Estimation of groundwater recharge in a major sand and gravel aquifer in Ireland using multiple approaches. Hydrogeology Journal, 17, 693–706.

    Article  Google Scholar 

  • Mosier, A. R., & Klemedtsson, L. (1994). Measuring denitrification in the field. In Weaver et al. (Eds.), Methods of soil analysis. Part 2, SSSA Book Ser 5 (pp. 1047–1065).

    Google Scholar 

  • Mosier, A. R., & Schimel, D. S. (1993). Nitrification and denitrification. In R. Knowles & T. H. Blackburn (Eds.), Nitrogen isotope techniques (pp. 181–208). Academic Press: Orlando.

    Google Scholar 

  • Nelson, W. M., Gold, A. J., & Groffman, P. M. (1995). Spatial and temporal variation in groundwater nitrate removal in a riparian forest. Journal of Environmental Quality, 24, 691–699.

    Article  CAS  Google Scholar 

  • Organisation of Economic Co-operation and Development. (2009). OECD environmental performance reviews of Ireland, conclusions and recommendations (pp. 2–18). Paris: Organisation of Economic Co-operation and Development.

    Google Scholar 

  • Ott, R. L. (1993). An introduction to statistical methods and data analysis (4th ed.). Belmont: Duxbury Press.

    Google Scholar 

  • Premrov, A., Coxon, C. E., Hackett, R., Kirwan, L., & Richards, K. G. (2012). Effects of over-winter green cover on groundwater nitrate and dissolved organic carbon concentrations beneath tillage land. Science of the Total Environment, 438, 144–153.

    Article  CAS  Google Scholar 

  • Richards, K., Coxon, C. E., & Ryan, M. (2005). Unsaturated zone travel time to groundwater on a vulnerable site. Irish Geography, 38, 57–71.

    Article  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. S. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Research, 42, 4215–4232.

    Article  CAS  Google Scholar 

  • Robertson, L. A., Dalsgaard, T., Revsbech, N. P., & Kuenen, J. (1995). Confirmation of ‘aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecology, 18, 113–120.

    Article  CAS  Google Scholar 

  • Schipper, L., & Vojvodic-Vukovic, M. (1998). Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trial. Journal of Environmental Quality, 27, 664–668.

    Article  CAS  Google Scholar 

  • Scholefield, D., Hawkins, J. M. B., & Jackson, S. M. (1997). Use of flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. Soil Biology and Biochemistry, 29, 1337–1344.

    Article  CAS  Google Scholar 

  • Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Van Drecht, G. (2006). Denitrification across landscape and waterscape: a synthesis. Ecological Application, 16, 2064–2090.

    Article  CAS  Google Scholar 

  • Simek, M., & Cooper, J. E. (2002). The influence of soil pH on denitrification: process towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53, 345–354.

    Article  CAS  Google Scholar 

  • Simmons, R. C., Gold, A. J., & Groffman, P. M. (1992). Nitrate dynamics in riparian forests: groundwater studies. Journal of Environmental Quality, 21, 656–665.

    Article  Google Scholar 

  • Starr, J. L., Sadeghi, A. M., Parkin, T. B., & Meisinger, J. J. (1996). A tracer test to determine the fate of nitrate in shallow groundwater. Journal of Environmental Quality, 25, 917–923.

    Article  CAS  Google Scholar 

  • Technology, I., & Council, R. (2002). A systematic approach to in situ bioremediation in groundwater. Washington: Technical/Regulatory Guidelines.

    Google Scholar 

  • Tiedje, J. M. (1982). Denitrification. In Page et al. (Eds.), Methods of soil analysis. Part 2. Agronomy monograph no. 9 (2nd ed., pp. 1011–1025). Madison: ASA and SSSA.

    Google Scholar 

  • Ueda, S., Ogura, N., & Yoshinary, T. (1993). Accumulation of nitrous oxide in aerobic groundwaters. Water Research, 27, 1787–1792.

    Article  CAS  Google Scholar 

  • Van Drecht, G., Bouwman, A. F., Knoop, J. M., Beusen, A. H. W., & Meinardi, C. R. (2003). Global modelling of the fate of nitrogen from point and non-point sources in soils, groundwater, and surface water. Global Biogeochemical Cycles, 17(4), 1115. doi:10.1029/2003GB002060.

    Google Scholar 

  • Vogel, J. C., Talma, A. S., & Heaton, T. H. E. (1981). Gaseous nitrogen as evidence for denitrification in groundwater. Journal of Hydrology, 50(1–3), 191–200.

    Article  CAS  Google Scholar 

  • Von der Heide, C., Böttcher, J., Deurer, M., Weymann, D., Well, R., & Duijnisveld, W. H. M. (2008). Spatial variability of N2O concentrations and of denitrification-related factors in the surficial groundwater of a catchment in Northern Germany. Journal of Hydrology, 360, 230–241.

    Article  Google Scholar 

  • VSN International Ltd. (2011). GenStat. Version 13.1. Oxford: VSN International Ltd.

    Google Scholar 

  • Weymann, D., Well, R., Flessa, H., von der Heide, C., Deurer, M., Meyer, K., Konrad, C., & Walther, W. (2008). Groundwater N2O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N2O accumulation. Biogeosciences Discussion, 5, 1215–1226.

    Article  CAS  Google Scholar 

  • Weymann, D., Geistlinger, H., Well, R., Von der Heide, C., & Flessa, H. (2010). Kinetics of N2O production and reduction in a nitrate-contaminated aquifer inferred from laboratory incubation experiments. Biogeosciences, 7, 1953–1972.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by the Department of Agriculture and Food, Ireland, through the Research Stimulus Fund Programme (grant RSF 06383) in collaboration with the Department of Civil, Structural and Environmental Engineering, The University of Dublin, Trinity College. The authors sincerely acknowledge the contribution of Mr. John Murphy in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Richards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahangir, M.M.R., Johnston, P., Addy, K. et al. Quantification of In Situ Denitrification Rates in Groundwater Below an Arable and a Grassland System. Water Air Soil Pollut 224, 1693 (2013). https://doi.org/10.1007/s11270-013-1693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1693-z

Keywords

Navigation