Skip to main content
Log in

Variation in herbivory along a latitudinal gradient for native and exotic Asteraceae

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

It has long been hypothesized that biotic interactions, including herbivory, are most intense at lower latitudes. However, this generalization has recently been challenged with studies showing that latitudinal gradients in damage may be rarer than previously believed. Additionally, most studies have focused on herbivory of native species, so it remains unknown whether natives and exotics follow similar patterns. This study compares rates of aboveground herbivory of multiple native and non-native Asteraceae across a latitudinal gradient, with a more detailed investigation of a focal exotic, Cirsium arvense. Herbivory of multiple tissue types was quantified for all species across an 815 km transect in Ontario, Canada. The native Asteraceae included in the survey typically experienced a decline in folivory with increasing latitude. Herbivory patterns for the exotic species were less clear; while most experienced high damage at the southernmost site, some also experienced high damage rates at mid-latitudes. For the focal species C. arvense, leaf and stem herbivory declined with increasing latitude, although seed damage showed strong regional variation across the invaded range. These results show that latitudinal variation in herbivory is highly dependent on the plant species being investigated, the tissue type being measured, and the type of herbivore(s) causing the damage. In some cases, populations in marginal areas might benefit from reduced damage by some groups of herbivores. In other cases, factors such as the availability of suitable habitat, the biology of specific enemies, and the origin of the host plant may override the influence of latitude on host performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander HM, Price S, Houser R, Finch D, Tourtellot M (2007) Is there reduction in disease and pre-dispersal seed predation at the border of a host plant’s range? Field and herbarium studies of Carex blanda. J Ecol 95:446–457. doi:10.1111/j.1365-2745.2007.01228.x

    Article  Google Scholar 

  • Angermann HJ (1986) Ecological differentiation of the Tephritid flies Xyphosia miliaria and Orellia ruficauda (Diptera: Tephritidae) in the flower heads of Canada thistle (Cirsium arvense). Entomol Gen 11:249–261

    Article  Google Scholar 

  • Anstett DN, Naujokaitis-Lewis I, Johnson MTJ (2014) Latitudinal gradients in herbivory on Oenothera biennis vary according to herbivore guild and specialization. Ecology 95:2915–2923

    Article  Google Scholar 

  • Bach CE (1994) Effects of a specialist herbivore (Altica subplicata) on Salix cordata and sand dune succession. Ecol Monogr 64:423–445

    Article  Google Scholar 

  • Baldwin DJB, Desloges JR, Band LE (2000) Physical geography of Ontario. In: Perera AH, Euler DE, Thompson ID (eds) Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes in Ontario. University of British Columbia Press, Vancouver

    Google Scholar 

  • Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 7:2269–2286

    Article  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318. doi:10.1016/j.tree.2009.12.003

    Article  PubMed  Google Scholar 

  • Clausen JD, Keck D, Hiesey WM (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Institute of Washington, Washington, DC

    Google Scholar 

  • Coley PD, Aide TM (1991) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 25–49

    Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Cripps MG, Gassmann A, Fowler SV, Bourdôt GW, McClay AS, Edwards GR (2011) Classical biological control of Cirsium arvense: lessons from the past. Biol Control 57:165–174. doi:10.1016/j.biocontrol.2011.03.011

    Article  Google Scholar 

  • Darling E, Samis KE, Eckert CG (2008) Increased seed dispersal potential towards geographic range limits in a Pacific coast dune plant. New Phytol 178:424–435. doi:10.1111/j.1469-8137.2007.02349.x

    Article  PubMed  Google Scholar 

  • Dawson W, Burslem DFRP, Hulme PE (2009) Herbivory is related to taxonomic isolation, but not to invasiveness of tropical alien plants. Divers Distrib 15:141–147. doi:10.1111/j.1472-4642.2008.00527.x

    Article  Google Scholar 

  • Early R, Sax DF (2014) Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob Ecol Biogeogr 23:1356–1365. doi:10.1111/geb.12208

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. The ecology of invasions by animals and plants. Wiley, New York

    Book  Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Recent advances in phytochemistry. Plenum Press, New York, pp 1–40

    Google Scholar 

  • Frenzel M, Eber S, Klotz S, Brandl R (2000) Ecological comparisons across geographical distributions: the thistle gall fly Urophora cardui (Diptera: Tephritidae) on two different Cirsium hosts. Eur J Entomol 97:183–189

    Article  Google Scholar 

  • Harvey KJ, Nipperess DA, Britton DR, Hughes L (2012) Australian family ties: Does a lack of relatives help invasive plants escape natural enemies? Biol Invasions 14:2423–2434. doi:10.1007/s10530-012-0239-4

    Article  Google Scholar 

  • Harvey KJ, Nipperess DA, Britton DR, Hughes L (2013) Does time since introduction influence enemy release of an invasive weed? Oecologia 173:493–506. doi:10.1007/s00442-013-2633-8

    Article  PubMed  Google Scholar 

  • Hatcher MJ, Dunn AM (2011) Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hawkes CV (2007) Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Am Nat 170:832–843. doi:10.1086/522842

    Article  PubMed  Google Scholar 

  • Huntly N (1991) Herbivores and the dynamics of communities and ecosystems. Annu Rev Ecol Syst 22:477–503. doi:10.1146/annurev.es.22.110191.002401

    Article  Google Scholar 

  • Jonas T, Rixen C, Sturm M, Stoeckli V (2008) How alpine plant growth is linked to snow cover and climate variability. J Geophys Res. doi:10.1029/2007jg000680

    Google Scholar 

  • Jump AS, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. New Phytol 160:349–358. doi:10.1046/j.1469-8137.2003.00873.x

    Article  Google Scholar 

  • Kambo D, Kotanen PM (2014) Latitudinal trends in herbivory and performance of an invasive species, common burdock (Arctium minus). Biol Invasions 16:101–112. doi:10.1007/s10530-013-0506-z

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    Article  CAS  PubMed  Google Scholar 

  • Kozlov MV (2007) Losses of birch foliage due to insect herbivory along geographical gradients in Europe: A climate-driven pattern? Clim Change 87:107–117. doi:10.1007/s10584-007-9348-y

    Article  Google Scholar 

  • Lalonde RG (1991) Oviposition behavior of Orellia ruficauda on Canada thistle. Dissertation, Simon Fraser University

  • Larson GE, Wittig TA, Higgins KF, Turnipseed B, Gardner DM (2005) Influence of biocontrol insects on Canada thistle: seed production, germinability, and viability. Prairie Nat 37:85–100

    Google Scholar 

  • Lee Y, Kotanen PM (2014) Differences in herbivore damage and performance among Arctium minus (burdock) genotypes sampled from a geographic gradient: a common garden experiment. Biol Invasions. doi:10.1007/s10530-014-0737-7

    Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi:10.1111/j.1461-0248.2004.00657.x

    Article  Google Scholar 

  • Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545. doi:10.1007/s10530-005-5845-y

    Article  Google Scholar 

  • Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B 273:2575–2584. doi:10.1098/rspb.2006.3587

    Article  PubMed  PubMed Central  Google Scholar 

  • Maron JL, Vila M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373

    Article  Google Scholar 

  • Mitchell CE et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740. doi:10.1111/j.1461-0248.2006.00908.x

    Article  PubMed  Google Scholar 

  • Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011a) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388. doi:10.1111/j.1365-2435.2010.01814.x

    Article  Google Scholar 

  • Moles AT et al (2011b) Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytol 191:777–788. doi:10.1111/j.1469-8137.2011.03732.x

    Article  PubMed  Google Scholar 

  • Moore RJ (1975) The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop. Can J Plant Sci 55:1033–1048

    Article  Google Scholar 

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci USA 106:18097–18102. doi:10.1073/pnas.0904867106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennings SC, Silliman BR (2005) Linking biogeography and community ecology: latitudinal variation in plant–herbivore interaction strength. Ecology 86:2310–2319

    Article  Google Scholar 

  • Pennings SC et al (2007) Latitudinal variation in plant–herbivore interactions in European salt marshes. Oikos 116:543–549. doi:10.1111/j.2007.0030-1299.15591.x

    Google Scholar 

  • Pennings SC, Ho CK, Salgado CS, Wieski K, Dave N, Kunza AE, Wason EL (2009) Latitudinal variation in herbivore pressure in Atlantic Coast salt marshes. Ecology 90:183–195

    Article  PubMed  Google Scholar 

  • Salazar D, Marquis RJ (2012) Herbivore pressure increases toward the equator. PNAS 109:12616–12620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269. doi:10.1146/annurev.ecolsys.39.110707.173430

    Article  Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436. doi:10.1146/annurev.ecolsys.110308.120317

    Article  Google Scholar 

  • Tiley GED (2010) Biological Flora of the British Isles: Cirsium arvense (L.) Scop. J Ecol 98:938–983. doi:10.1111/j.1365-2745.2010.01678.x

    Article  Google Scholar 

  • Torchin ME, Mitchell CE (2004) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190

    Article  Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B Biol Sci 365:2025–2034. doi:10.1098/rstb.2010.0037

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaupel A, Matthies D (2012) Abundance, reproduction, and seed predation of an alpine plant decrease from the center toward the range limit. Ecology 93:2253–2262

    Article  PubMed  Google Scholar 

  • Voss EG (1996) Michigan Flora Part III. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Warwick SI, Black L (1982) The biology of Canadian weeds. 52. Achillea millefolium L. s.l. Can J Plant Sci 62:163–182

    Article  Google Scholar 

  • Woods EC, Hastings AP, Turley NE, Heard SB, Agrawal AA (2012) Adaptive geographical clines in the growth and defense of a native plant. Ecol Monogr 82:149–168

    Article  Google Scholar 

  • Zhang Y, Adams J, Zhao D (2011) Does insect folivory vary with latitude among temperate deciduous forests? Ecol Res 26:377–383. doi:10.1007/s11284-010-0792-1

    Article  Google Scholar 

  • Ziska LH, Faulkner S, Lydon J (2004) Changes in biomass and root: shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: implications for control with glyphosate. Weed Sci 52:584–588. doi:10.1614/ws-03-161r

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). We would like to thank L. Cassin, L. A. Goodine, L. Hu, A. Kamath, J. O’Connell, and K. Robert for assistance in the field and lab, and Algonquin Provincial Park for permitting access.

Funding

This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystal A. Nunes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Scott J. Meiners.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, K.A., Cassin, C.M. & Kotanen, P.M. Variation in herbivory along a latitudinal gradient for native and exotic Asteraceae . Plant Ecol 217, 481–493 (2016). https://doi.org/10.1007/s11258-016-0593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0593-x

Keywords

Navigation