Skip to main content
Log in

A Molecular Dynamics Study of the Transition from Ultra-Thin Film Lubrication Toward Local Film Breakdown

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The transition from ultra-thin lubrication to dry friction under high pressure and shear is studied using molecular dynamics: the quantity of lubricant in the confined film is progressively reduced toward solid-body contact. A quantized layer structure is observed for n-alkanes confined between smooth, wettable walls, featuring an alternation of well-layered, low friction configurations, and disordered ones, characterized by high friction, and heat generation. The molecular structure influences the ordering of the fluid and the resulting shear stress. In fact, Lennard-Jones fluids are characterized by low friction due to the absence of interlayer bridges, opposed to the always entangled states and high shear stresses for branched molecules. Surface geometry and wettability also affect the behavior of the confined lubricant. The presence of nanometer-scale roughness frustrates the ordering of the fluid molecules, leading to high friction states. Furthermore, local film breakdown can be observed when the asperities come into contact, with strong wall–wall interactions causing the maximum in shear stress. Finally, friction is limited to a small, constant value by the presence of smooth, non-wettable surfaces in the system due to the occurrence of wall slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a, b, c :

Lattice constants in the x-, y- and z- directions

λ, A :

Amplitude and wavelength of the nanometer-scale roughness

c θ , θ :

Spring stiffness and equilibrium angle of the angle bending potential

h :

Surface separation

k b, l 0 :

Half spring stiffness and equilibrium length of the bond stretching potential

k φ , n, d :

Dihedral force constant, multiplicity and phase shift of the CHARMM torsion potential

L x , L y :

System dimensions in length and width

m :

Molecular mass

n C :

Number of CH x groups per surface unit

\( n_{{{\text{CH}}_{x} ,{\text{mol}}}} \) :

Number of CH x groups per alkane molecule

n mol :

Number of fluid molecules in the system

P :

External pressure

P adh :

Normal pressure due to adhesion

r :

Interatomic distance

S :

Area of the contact patch

T f :

Fluid temperature

T w :

Wall temperature

u 1, u 2 :

Velocities of the upper and lower walls

V b, V θ , V φ :

Potentials for the bonded interactions: covalent bond stretching, angle bending, and torsion

V LJ :

Lennard-Jones potential for the non-bonded interactions

ɛ, σ :

Energy and characteristic distance for the Lennard-Jones potential

ρ :

Lubricant density

τ zx :

Shear stress measured at the walls

References

  1. Dowson, D.: History of Tribology. Longman, London (1979)

    Google Scholar 

  2. Robbins, M., Müser, M.: Modern Tribology Handbook, vol. 1, chap. 20: Computer Simulations of Friction, Lubrication, and Wear, pp. 717–765 CRC Press LLC (2001)

  3. Gao, J., Luedtke, W., Landman, U.: Origins of solvation forces in confined films. J. Phys. Chem. B 101, 4013–4023 (1997)

    Article  CAS  Google Scholar 

  4. Gao, J., Luedtke, W., Landman, U.: Structure and solvation forces in confined films: linear and branched alkanes. J. Chem. Phys. 106, 4309–4318 (1997)

    Article  CAS  Google Scholar 

  5. Horn, R., Israelachvili, J.: Direct measurement of structural forces between two surfaces in a nonpolar liquid. J. Chem. Phys. 75, 1400–1411 (1981)

    Article  CAS  Google Scholar 

  6. Gee, M., McGuiggan, P., Israelachvili, J., Homola, A.: Liquid to solid like transitions of molecularly thin films under shear. J. Chem. Phys. 93, 1895–1906 (1990)

    Article  CAS  Google Scholar 

  7. Cui, S., Cummings, P., Cochran, H.: Structural transition and solid-like behavior of alkane films confined in nano-spacing. Fluid Phase Equilib. 183–184, 381–387 (2001)

    Article  Google Scholar 

  8. Savio, D., Fillot, N., Vergne, P., Zaccheddu, M.: A model for wall slip prediction of confined n-alkanes: effect of wall-fluid interaction versus fluid resistance. Tribol. Lett. 46, 11–22 (2012)

    Article  CAS  Google Scholar 

  9. Jabbarzadeh, A., Atkinson, J., Tanner, R.: The effect of branching on slip and rheological properties of lubricants in molecular dynamics simulation of couette shear flow. Tribol. Int. 35, 35–46 (2002)

    Article  CAS  Google Scholar 

  10. Fillot, N., Berro, H., Vergne, P.: From continuous to molecular scale in modelling elastohydrodynamic lubrication: nanoscale surface slip effects on film thickness and friction. Tribol. Lett. 43, 257–266 (2011)

    Article  CAS  Google Scholar 

  11. Martini, A., Roxin, A., Snurr, R., Wang, Q., Lichter, S.: Molecular mechanisms of liquid slip. J. Fluid Mech. 600, 257–269 (2008)

    Article  CAS  Google Scholar 

  12. Jabbarzadeh, A., Atkinson, J., Tanner, R.: Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of couette shear flow between two sinusoidal walls. Phys. Rev. E 61, 690–699 (2000)

    Article  CAS  Google Scholar 

  13. Berro, H.: A Molecular dynamics approach to nano-scale lubrication. PhD thesis, Villeurbanne, INSA de Lyon, October 11th, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0084/these.pdf (2010)

  14. Gao, J., Luedtke, W., Landman, U.: Layering transitions and dynamics of confined liquid films. Phys. Rev. Lett. 79, 705–708 (1997)

    Article  CAS  Google Scholar 

  15. Gao, J., Luedtke, W., Landman, U.: Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett. 9, 3–13 (2000)

    Article  CAS  Google Scholar 

  16. Persson, B., Ballone, P.: Boundary lubrication: layering transition for curved solid surfaces with long-range elasticity. Solid State Commun. 115, 599–604 (2000)

    Article  CAS  Google Scholar 

  17. Sivebaek, I., Samoilov, V., Persson, B.: Squeezing molecular thin alkane films between curved solid surfaces with long-range elasticity: layering transitions and wear. J. Chem. Phys. 119, 2314–2321 (2003)

    Article  CAS  Google Scholar 

  18. Persson, B., Mugele, F.: Squeeze-out and wear: fundamental principles and applications. J. Phys.: Condens. Matter 16, 295–355 (2004)

    Article  Google Scholar 

  19. Samoilov, V., Sivebaek, I., Persson, B.: The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant. J. Chem. Phys. 121, 1997 (2004)

    Article  Google Scholar 

  20. Tartaglino, U., Sivebaek, I., Persson, B., Tosatti, E.: Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity. J. Chem. Phys. 125(1), 014704 (2006)

    Article  CAS  Google Scholar 

  21. Allen, M., Tildesley, D.: Computer Simulations of Liquids. Clarendon Press, Oxford (1987)

    Google Scholar 

  22. Kierfeld, J., Vinokur, V.: Lindemann criterion and vortex lattice phase transitions in type-II superconductors. Phys. Rev. B 69, 1–21 (2004)

    Google Scholar 

  23. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, NY (1995)

    Google Scholar 

  24. Jorgensen, W., Tirado-Rives, J.: The OPLS forcefield for proteins energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1723 (1988)

    Article  CAS  Google Scholar 

  25. Cornell, W., Cieplak, P., Bayly, C., Gould, I., Merz, K., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., Kollman, P.: A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  CAS  Google Scholar 

  26. Xia, T., Ouyang, J., Ribarsky, M., Landman, U.: Interfacial alkane films. Phys. Rev. Lett. 69, 1967–1970 (1992)

    Article  CAS  Google Scholar 

  27. Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)

    Article  CAS  Google Scholar 

  28. Berro, H., Fillot, N., Vergne, P., Tokumasu, T., Ohara, T., Kikugawa, G.: Energy dissipation in non-isothermal molecular dynamics simulations of confined liquids under shear. J. Chem. Phys. 135, 134708 (2011)

    Article  Google Scholar 

  29. Berro, H., Fillot, N., Vergne, P.: Hybrid diffusion: an efficient method for kinetic temperature calculation in molecular dynamics simulations of confined lubricant films. Tribol. Lett. 37, 1–13 (2010)

    Article  CAS  Google Scholar 

  30. Habchi, W., Vergne, P., Bair, S., Andersson, O., Eyheramendy, D., Morales-Espejel, G.: Influence of pressure and temperature dependence of thermal properties of a lubricant on the behaviour of circular TEHD contacts. Tribol. Int. 43, 1842–1850 (2010)

    Article  CAS  Google Scholar 

  31. Somers, S., Davis, H.: Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces. J. Chem. Phys. 96, 5389–5407 (1992)

    Article  CAS  Google Scholar 

  32. Christenson, H., Gruen, D., Horn, R., Israelachvili, J.: Structuring in liquid alkanes between solid surfaces: force measurements and mean-field theory. J. Chem. Phys. 87, 1834–1841 (1987)

    Article  CAS  Google Scholar 

  33. Dowson, D., Higginson, G.: Elastohydrodynamic Lubrication, The Fundamentals of Roller and Gear Lubrication. Pergamon, Oxford (1966)

    Google Scholar 

  34. Gupta, S., Cochran, H., Cummings, P.: Nanorheology of liquid alkanes. Fluid Phase Equilib. 150–151, 125–131 (1998)

    Article  Google Scholar 

  35. Kamei, D., Zhou, H., Suzuki, K., Konno, K., Takami, S., Kubo, M., Miyamoto, A.: Computational chemistry study on the dynamics of lubricant molecules under shear conditions. Tribol. Int. 36, 202–297 (2003)

    Article  Google Scholar 

  36. Jabbarzadeh, A., Harrowel, P., Tanner, R.: Very low friction state of a dodecane film confined between mica surfaces. Phys. Rev. Lett. 94, 1–4 (2005)

    Article  Google Scholar 

  37. Berman, A.D., Israelachvili, J.N.: Modern tribology handbook, vol. 1, chap. 16: Microtribology and Microrheology or Molecularly Thin Liquid Films, pp. 567–616, CRC Press LLC (2001)

  38. Naidu, S., Klaus, E., Duda, J.: Evaluation of liquid phase oxidation products of ester and mineral oil lubricants. Ind. Eng. Chem. Prod. Res. Dev. 23, 613–619 (1984)

    Article  CAS  Google Scholar 

  39. Naidu, S., Klaus, E., Duda, J.: Kinetic model for high-temperature oxidation of lubricants. Ind. Eng. Chem. Prod. Res. Dev. 25, 596–603 (1986)

    Article  CAS  Google Scholar 

  40. Padilla, P.: Chemical structure effects on the equilibrium and under shear properties of thin films in confined geometries: a molecular dynamics simulation study. J. Chem. Phys. 103, 2157–2168 (1995)

    Article  CAS  Google Scholar 

  41. Padilla, P., Toxvaerd, S.: Fluid alkanes in confined geometries. J. Chem. Phys. 101, 1490–1502 (1994)

    Article  CAS  Google Scholar 

  42. Jabbarzadeh, A., Harrowel, P., Tanner, R.: Crystal bridge formation marks the transition to rigidity in a thin lubrication film. Phys. Rev. Lett. 96, 1–4 (2006)

    Article  Google Scholar 

  43. Kelchner, C., Plimpton, S., Hamilton, J.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)

    Article  CAS  Google Scholar 

  44. Spijker, P., Anciaux, G., Molinari, J.-F.: Dry sliding contact between rough surfaces at the atomistic scale. Tribol. Lett. 44, 279–285 (2011)

    Article  CAS  Google Scholar 

  45. Foiles, S., Baskes, M., Daw, M.: Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)

    Article  CAS  Google Scholar 

  46. Lanke, U., Vedawyas, M.: Ion beam processing of oriented CuO films deposited on (1 0 0) YSZ by laser ablation. Nucl. Instrum. Methods Phys. Res. B 155, 97 (1999)

    Article  CAS  Google Scholar 

  47. Rollmann, G., Rohrbach, A., Entel, P., Hafner, J.: First-principles calculation of the structure and magnetic phases of hematite. Phys. Rev. B 69, 165107 (2004)

    Article  Google Scholar 

  48. Zhang, L., Balasundaram, R., Gehrke, S., Jiang, S.: Non equilibrium molecular dynamics simulations of confined fluids in contact with the bulk. J. Chem. Phys. 114, 6869–6877 (2001)

    Article  CAS  Google Scholar 

  49. Minfray, C., Mogne, T.L., Martin, J.-M., Onodera, T., Nara, S., Takahashi, S., Tsuboi, H., Koyama, M., Endou, A., Takaba, H., Kubo, M., Carpio, C.D., Miyamoto, A.: Experimental and molecular dynamics simulations of tribochemical reactions with ZDDP: zinc phosphate-iron oxide reaction. Tribol. Trans. 51, 589–601 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would to thank Mr. Alexander de Vries, Director SKF Group Product Development, for his kind permission to publish this article. This work was supported by SKF ERC, the Netherlands, and SKF Aeroengine France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Savio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savio, D., Fillot, N. & Vergne, P. A Molecular Dynamics Study of the Transition from Ultra-Thin Film Lubrication Toward Local Film Breakdown. Tribol Lett 50, 207–220 (2013). https://doi.org/10.1007/s11249-013-0113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0113-2

Keywords

Navigation