Skip to main content
Log in

Lubricity of Surface Hydrogel Layers

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Many biological interfaces provide low friction aqueous lubrication through the generation and maintenance of a high water content polymeric surface gel. The lubricity of such gels is often attributed to their high water content, high water permeability, low elastic modulus, and their ability to promote a water film at the sliding interface. Such biological systems are frequently characterized as “soft,” where the elastic moduli are on the order of megapascals or even kilopascals. In an effort to explore the efficacy of such systems to provide lubricity, a thin and soft hydrogel surface layer (~5 μm in thickness) with a water content of over >80 % was constructed on a silicone hydrogel contact lens, which has a water content of approximately 33 %. Nanoindentation measurements with colloidal probes on atomic force microscopy (AFM) cantilevers revealed an exceedingly soft elastic modulus of ~25 kPa. Microtribological experiments at low contact pressures (6–30 kPa) and at slow sliding speeds (5–200 μm/s) gave average friction coefficients below μ = 0.02. However, at higher contact pressures, the gel collapsed and friction loops showed a pronounced stick–slip behavior with breakloose or static friction coefficient above μ = 0.5. Thus, the ability of the soft surface hydrogel layers to provide lubricity is dependent on their ability to support the applied pressure without dehydrating. These transitions were found to be reversible and experiments with different radii probes revealed that the transition pressures to be on the order of 10–20 kPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davidson, H.J., Kuonen, V.J.: The tear film and ocular mucins. Vet. Ophthalmol. 7(2), 71–77 (2004)

    Article  CAS  Google Scholar 

  2. Coles, J.M., Chang, D.P., Zauscher, S.: Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr. Opin. Colloid Interface Sci. 15(6), 406–416 (2010). doi:10.1016/j.cocis.2010.07.002

    Article  CAS  Google Scholar 

  3. Yakubov, G.E., Mccoll, J., Bongaerts, J.H.H., Ramsden, J.J.: Viscous boundary lubrication of hydrophobic surfaces by mucin. Langmuir 25(4), 2313–2321 (2009). doi:10.1021/La8018666

    Article  CAS  Google Scholar 

  4. Wang, J.J., Li, X.S.: Preparation and characterization of interpenetrating polymer network silicone hydrogels with high oxygen permeability. J. Appl. Polym. Sci. 116(5), 2749–2757 (2010). doi:10.1002/App.31902

    CAS  Google Scholar 

  5. Qiu, Y., Pruitt, J.D., Thekveli, S.J., Tucker, R.C., Nelson, J.: Sillicone hydrogel lenses with water-rich surfaces. USA Patent 20120026458

  6. Qiu, Y., Samuel, N.T., Pruitt, J.D., Kolluru, C., Medina, A.N., Winterton, L.C., Wu, D., Qian, X., Nelson, J.: Silicone hydrogels with a crosslinked hydrophilic coating. USA. Patent 20120026457

  7. Shaw, A.J., Collins, M.J., Davis, B.A., Carney, L.G.: Eyelid pressure and contact with the ocular surface. Invest. Ophthalmol. Vis. Sci. 51(4), 1911–1917 (2010). doi:10.1167/Iovs.09-4090

    Article  Google Scholar 

  8. Roba, M., Duncan, E.G., Hill, G.A., Spencer, N.D., Tosatti, S.G.P.: Friction measurements on contact lenses in their operating environment. Tribol. Lett. 44(3), 387–397 (2011). doi:10.1007/s11249-011-9856-9

    Article  Google Scholar 

  9. Zhou, B., Li, Y.T., Randall, N.X., Li, L.: A study of the frictional properties of senofilcon—a contact lenses. J. Mech. Behav. Biomed. 4(7), 1336–1342 (2011). doi:10.1016/j.jmbbm.2011.05.002

    Article  CAS  Google Scholar 

  10. Nairn, J.A.: Measurement of the friction and lubricity properties of contact lenses. In: ANTEC: The Plastics Challenger: A Revolution in Education 1995, p. 3384. Society of Plastics Engineers

  11. Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18(4), 499–504 (2005). doi:10.1007/s11249-005-3610-0

    Article  CAS  Google Scholar 

  12. Ngai, V., Medley, J.B., Jones, L., Forrest, J., Teichroeb, J.: Friction of contact lenses: Silicone hydrogel versus conventional hydrogel. In: 31st Leeds-Lyon Symposium on Tribology, Trinity and All Saints College, Horsforth, Leeds, 2004. Tribology and Interface Engineering Series, pp. 371–379 (2005)

  13. Tighe, B.: Measurement of frictional characteristics of contact lenses. In: BCLA Annual Clinical Conference, Birmingham, 2006, pp. 201–202. Contact Lens & Anterior Eye (2006)

  14. Tucker, R.C., Quinter, B., Patel, D., Pruitt, J.D., Nelson, J.: Qualitative and Quantitative Lubricity of Experimental Contact Lenses. Paper presented at the ARVO, Fort Lauderdale, FL, 10 May 2012

  15. Bonnevie, E.D., Baro, V.J., Wang, L., Burris, D.L.: Fluid load support during localized indentation of cartilage with a spherical probe. J. Biomech. 45(6), 1036–1041 (2012). doi:10.1016/j.jbiomech.2011.12.019

    Article  CAS  Google Scholar 

  16. Schmitz, T.L., Action, J.E., Ziegert, J.C., Sawyer, W.G.: The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. J Tribol-T Asme 127(3), 673–678 (2005). doi:10.1115/1.1843853

    Article  Google Scholar 

  17. Perry, S.S., Yan, X.P., Limpoco, F.T., Lee, S., Muller, M., Spencer, N.D.: Tribological properties of poly(l-lysine)-graft-poly(ethylene glycol) films: influence of polymer architecture and adsorbed conformation. Acs Appl Mater Inter 1(6), 1224–1230 (2009). doi:10.1021/Am900101m

    Article  CAS  Google Scholar 

  18. Dunlop, I.E., Thomas, R.K., Titmus, S., Osborne, V., Edmondson, S., Huck, W.T.S., Klein, J.: Structure and collapse of a surface-grown strong polyelectrolyte brush on sapphire. Langmuir 28(6), 3187–3193 (2012). doi:10.1021/La204655h

    Article  CAS  Google Scholar 

  19. Thekveli, S.J.: Structure–property relationship of delefilcon A lenses. Paper presented at the BCLA Conference 2012, Birmingham, UK

  20. Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64(7), 1868–1873 (1993)

    Article  CAS  Google Scholar 

  21. Uruena, J.M., Dunn, A.C., Sawyer, W.G.: Contact lens boundary lubrication and friction reduction with hyaluronic acid. Tribol. Lubr. Technol. 67(12), 14–15 (2011)

    Google Scholar 

  22. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  23. Kuznetsova, T.G., Starodubtseva, M.N., Yegorenkov, N.I., Chizhik, S.A., Zhdanov, R.I.: Atomic force microscopy probing of cell elasticity. Micron 38(8), 824–833 (2007). doi:10.1016/j.micron.2007.06.011

    Article  CAS  Google Scholar 

  24. Straehla, J.P., Limpoco, F.T., Dolgova, N.V., Keselowsky, B.G., Sawyer, W.G., Perry, S.S.: Nanomechanical probes of single corneal epithelial cells: shear stress and elastic modulus. Tribol. Lett. 38(2), 107–113 (2010). doi:10.1007/s11249-010-9579-3

    Article  Google Scholar 

  25. Abu-Lail, N.I., Kaholek, M., LaMattina, B., Clark, R.L., Zauscher, S.: Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing. Sensor Actuat. B 114(1), 371–378 (2006). doi:10.1016/j.snb.2005.06.003

    Article  Google Scholar 

  26. Kim, P., Zarzar, L.D., Zhao, X.H., Sidorenko, A., Aizenberg, J.: Microbristle in gels: toward all-polymer reconfigurable hybrid surfaces. Soft Matter 6(4), 750–755 (2010). doi:10.1039/B920392c

    Article  CAS  Google Scholar 

  27. Huck, W.T.S.: Responsive polymers for nanoscale actuation. Mater. Today 11(7–8), 24–32 (2008)

    Article  CAS  Google Scholar 

  28. Muller, M.T., Yan, X.P., Lee, S.W., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38(13), 5706–5713 (2005). doi:10.1021/Ma0501545

    Article  Google Scholar 

  29. Vyas, M.K., Schneider, K., Nandan, B., Stamm, M.: Switching of friction by binary polymer brushes. Soft Matter 4(5), 1024–1032 (2008). doi:10.1039/B801110a

    Article  CAS  Google Scholar 

  30. Makkar, C., Hu, G., Sawyer, W.G., Dixon, W.E.: Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction. IEEE Trans. Automat. Contr. 52(10), 1988–1994 (2007). doi:10.1109/Tac.2007.904254

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Drs. Pruitt and Sentell of Alcon Laboratories for many useful discussions on contact lenses and hydrogels, and for providing the delefilcon A lenses. This work was funded by Alcon Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, A.C., Urueña, J.M., Huo, Y. et al. Lubricity of Surface Hydrogel Layers. Tribol Lett 49, 371–378 (2013). https://doi.org/10.1007/s11249-012-0076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0076-8

Keywords

Navigation