Skip to main content

Advertisement

Log in

Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The ability to generate transgenic animals has existed for over 30 years, and from those early days many predicted that the technology would have beneficial applications in agriculture. Numerous transgenic agricultural animals now exist, however to date only one product from a transgenic animal has been approved for the food chain, due in part to cumbersome regulations. Recently, new techniques such as precision breeding have emerged, which enables the introduction of desired traits without the use of transgenes. The rapidly growing human population, environmental degradation, and concerns related to zoonotic and pandemic diseases have increased pressure on the animal agriculture sector to provide a safe, secure and sustainable food supply. There is a clear need to adopt transgenic technologies as well as new methods such as gene editing and precision breeding to meet these challenges and the rising demand for animal products. To achieve this goal, cooperation, education, and communication between multiple stakeholders—including scientists, industry, farmers, governments, trade organizations, NGOs and the public—is necessary. This report is the culmination of concepts first discussed at an OECD sponsored conference and aims to identify the main barriers to the adoption of animal biotechnology, tactics for navigating those barriers, strategies to improve public perception and trust, as well as industry engagement, and actions for governments and trade organizations including the OECD to harmonize regulations and trade agreements. Specifically, the report focuses on animal biotechnologies that are intended to improve breeding and genetics and currently are not routinely used in commercial animal agriculture. We put forward recommendations on how scientists, regulators, and trade organizations can work together to ensure that the potential benefits of animal biotechnology can be realized to meet the future needs of agriculture to feed the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott A (2015) Europe’s genetically edited plants stuck in legal limbo. Nat News 528:319–320

    Article  CAS  Google Scholar 

  • Baranyi M, Hiripi L, Szabó L, Catunda AP, Harsányi I, Komáromy P, Bosze Z (2007) Isolation and some effects of functional, low-phenylalanine kappa-casein expressed in the milk of transgenic rabbits. J Biotechnol 128:383–392

    Article  CAS  PubMed  Google Scholar 

  • Becker R (2015) US government approves transgenic chicken. Nat News 1038:18985

    Google Scholar 

  • Blancke S, Van Breusegem F, De Jaeger G, Braeckman J, Van Montagu M (2015) Fatal attraction: the intuitive appeal of GMO opposition. Trends Plant Sci 20:414–418

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21:157–162

    Article  CAS  PubMed  Google Scholar 

  • Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, Vives L, O’Roak BJ, Sudmant PH, Shendure J, Abney M, Ober C, Eichler EE (2012) Estimating the human mutation rate using autozygosity in a founder population. Nat Genet 44:1277–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson DF, Tan W, Hackett PB, Fahrenkrug SC (2013) Editing livestock genomes with site-specific nucleases. Reprod Fertil Dev 26:74–82

    Article  PubMed  Google Scholar 

  • CAST (Council for Agricultural Science and Technology) (2011) The science and regulation of food from genetically engineered animals. CAST Commentary QTA2011-2. CAST, Ames, Iowa. http://www.cast-science.org/publications/index.cfm/the_science_and_regulation_of_food_from_genetically_engineered_animals?show=product&productID=21628. Accessed 10 Nov 2015

  • Cooper CA, Maga EA, Murray JD (2014) Consumption of transgenic milk containing the antimicrobials lactoferrin and lysozyme separately and in conjunction by 6-week-old pigs improves intestinal and systemic health. J Dairy Res 81:30–37

    Article  CAS  PubMed  Google Scholar 

  • Cooper CA, Maga EA, Murray JD (2015) Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future. Transgenic Res 24:605–614

    Article  CAS  PubMed  Google Scholar 

  • Costa-Font M, Gil JM, Traill WB (2007) Consumer acceptance, valuation of and attitudes towards genetically modified food: review and implications for food policy. Food Policy 33:99–111

    Article  Google Scholar 

  • Devillers N, Farmer C, Le Dividich J, Prunier A (2007) Variability of colostrum yield and colostrum intake in pigs. Animal 1:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Dikmen S, Khan FA, Huson HJ, Sonstegard TS, Moss JI, Dahl GE, Hansen PJ (2014) The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J Dairy Sci 97:5508–5520

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov L, Pedersen D, Ching KH, Yi H, Collarini EJ, Izquierdo S, van de Lavoir MC, Leighton PA (2016) Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLoS ONE 11:e0154303

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinh TT, Blanton JR Jr, Riley DG, Chase CC Jr, Coleman SW, Phillips WA, Brooks JC, Miller MF, Thompson LD (2010) Intramuscular fat and fatty acid composition of longissimus muscle from divergent pure breeds of cattle. J Anim Sci 88:756–766

    Article  CAS  PubMed  Google Scholar 

  • Doudna J (2015) Embryo editing needs scrutiny. Nature 528:S6

    Article  CAS  PubMed  Google Scholar 

  • Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B, Middleton D, Kucuktas H (2002) Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar Biotechnol 4:338–344

    Article  CAS  PubMed  Google Scholar 

  • Englehard M, Hagen K, Boysen M (eds) (2009) Genetic engineering in livestock: new applications and interdisciplinary perspectives. Springer, Berlin and Heidelberg

    Google Scholar 

  • Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A, Faber D, Galli C, Hackett PB, Li N, Maga EA, Murray JD, Stotish R, Sullivan E, Taylor JF, Walton M, Wheeler M, Whitelaw B, Glenn BP (2010) Precision genetics for complex objectives in animal agriculture. J Anim Sci 88:2530–2539

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2007) The State of the World’s Animal Genetic Resources for Food and Agriculture. http://www.fao.org/docrep/010/a1250e/a1250e00.htm. FAO, Rome. Accessed 9 Nov 2015

  • Forsberg CW, Meidinger RG, Liu M, Cottrill M, Golovan S, Phillips JP (2013) Integration, stability and expression of the E. coli phytase transgene in the Cassie line of Yorkshire Enviropig™. Transgenic Res 22:379–389

    Article  CAS  PubMed  Google Scholar 

  • Francioli LC, Polak PP, Koren A, Menelaou A, Chun S, Renkens I, van Duijn CM, Swertz M, Wijmenga C, van Ommen G, Slagboom PE, Boomsma DI, Ye K, Guryev V, Arndt PF, Kloosterman WP, de Bakker PI, Sunyaev SR (2015) Genome-wide patterns and properties of de novo mutations in humans. Nat Genet 47:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  CAS  PubMed  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Nat Acad Sci USA 77:7380–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Saitou M (2013a) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8:1513–1524

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Saitou M (2013b) Stepwise differentiation from naïve state pluripotent stem cells to functional primordial germ cells through an epiblast-like state. Methods Mol Biol 1074:175–183

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Hodgkinson A, Eyre-Walker A (2011) Variation in the mutation rate across mammalian genomes. Nat Rev Genet 12:756–766

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Liu Y, Yan C, Peng X, Xu Q, Xuan Y, Han F, Tian G, Fang Z, Lin Y, Xu S, Zhang K, Chen D, Wu D, Che L (2015) Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction. Br J Nutr 114:53–62

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48:109–111

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (International Service for the Acquisition of Agri-biotech Applications) (2015) Pocket K No. 16: Global status of commercialized biotech/GM crops in 2014. http://www.isaaa.org/resources/publications/pocketk/16/. Accessed 29 May 2015

  • Jabed A, Wagner S, McCracken J, Wells DN, Laible G (2012) Targeted microRNA expression in dairy cattle directs production of beta-lactoglobulin-free, high-casein milk. Proc Nat Acad Sci USA 109:16811–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1:14011

    Article  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  Google Scholar 

  • Jost B, Vilotte JL, Duluc I, Rodeau JL, Freund JN (1999) Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland. Nat Biotechnol 17:160–164

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkden RD, Broom DM, Andersen IL (2013) Invited review: piglet mortality: management solutions. J Anim Sci 91:3361–3389

    Article  CAS  PubMed  Google Scholar 

  • Kling J (2009) First US approval for a transgenic animal drug. Nat Biotechnol 27:302–304

    Article  CAS  PubMed  Google Scholar 

  • Kwon SC, Choi JW, Jang HJ, Shin SS, Lee SK, Park TS, Choi IY, Lee GS, Song G, Han JY (2010) Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biol Reprod 82:1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laible G, Brophy B, Knighton D, Wells DN (2007) Compositional analysis of dairy products derived from clones and cloned transgenic cattle. Theriogenology 67:166–177

    Article  CAS  PubMed  Google Scholar 

  • Laible G, Wei J, Wagner S (2015) Improving livestock for agriculture: technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol J 10:109–120

    Article  CAS  PubMed  Google Scholar 

  • Ledford H (2013) US regulation misses some GM crops. Nat News 500:389–390

    Article  CAS  Google Scholar 

  • Levesque HM, Shears MA, Fletcher GL, Moon TW (2008) Myogenesis and muscle metabolism in juvenile Atlantic salmon (Salmo salar) made transgenic for growth hormone. J Exp Biol 211:128–137

    Article  CAS  PubMed  Google Scholar 

  • Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ, McLaren DG, Fahrenkrug SC, Whitelaw CB (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847

    Article  PubMed  Google Scholar 

  • LLOC (Global Legal Research Center, Law Library of Congress) (2014) Restrictions on genetically modified organisms. http://www.loc.gov/law. Accessed 15 Nov 2014

  • Lyall J, Irvine RM, Sherman A, McKinley TJ, Núñez A, Purdie A, Outtrim L, Brown IH, Rolleston-Smith G, Sang H, Tiley L (2011) Suppression of avian influenza transmission in genetically modified chickens. Science 331:223–226

    Article  CAS  PubMed  Google Scholar 

  • Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, McGrew MJ (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci USA 109:E1466–E1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maga EA, Shoemaker CF, Rowe JD, Bondurant RH, Anderson GB, Murray JD (2006) Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci 89:518–524

    Article  CAS  PubMed  Google Scholar 

  • Marshall KM, Hurley WL, Shanks RD, Wheeler MB (2006) Effects of suckling intensity on milk yield and piglet growth from lactation-enhanced gilts. J Anim Sci 84:2346–2351

    Article  CAS  PubMed  Google Scholar 

  • Murray JD, Maga EA (2010) Is there a risk from not using GE-animals? Transgenic Res 19:357–361

    Article  CAS  PubMed  Google Scholar 

  • Murray JD, Maga EA (2016) Opinion: a new paradigm for regulating genetically engineered animals that are used as food. Proc Natl Acad Sci USA 113:3410–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (2002) Animal biotechnology: science-based concerns. National Academy Press, Washington, DC

    Google Scholar 

  • Noble MS, Rodriguez-Zas S, Cook JB, Bleck GT, Hurley WL, Wheeler MB (2002) Lactational performance of first-parity transgenic gilts expressing bovine alpha-lactalbumin in their milk. J Anim Sci 80:1090–1096

    Article  CAS  PubMed  Google Scholar 

  • OECD (Organization for Economic Development) (2014) Consensus documents for the work on harmonization of regulatory oversight in biotechnology. http://www.oecd.org/science/biotrack/consensusdocumentsfortheworkonharmonisationofregulatoryoversightinbiotechnology.htm. Accessed 22 Sept 2014

  • OECD (Organization for Economic Development) (2015) OECD Guidance Documents for Pesticide Registration. http://www.oecd.org/chemicalsafety/pesticides-biocides/oecdguidancedocumentsforpesticideregistration.htm. Accessed 9 Nov 2015

  • Oishi I, Yoshii K, Miyahara D, Kagami H, Tagami T (2016) Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci Rep 6:23980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA, Whitelaw CB (2011) Species-specific variation in RELA underlies differences in NF-κB activity: a potential role in African swine fever pathogenesis. J Virol 85:6008–6014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL (1983) Metallothionein-human GH fusion genes stimulate growth of mice. Science 222:809–814

    Article  CAS  PubMed  Google Scholar 

  • Pan D, Zhang L, Zhou Y, Feng C, Long C, Liu X, Wan R, Zhang J, Lin A, Dong E, Wang S, Xu H, Chen H (2010) Efficient production of omega-3 fatty acid desaturase (sFat-1) transgenic pigs by somatic cell nuclear transfer. Sci China Life Sci 53:517–523

    Article  CAS  PubMed  Google Scholar 

  • Pang SC, Wang HP, Li KY, Zhu ZY, Kang JX, Sun YH (2014) Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model. Mar Biotechnol 16:580–593

    Article  CAS  PubMed  Google Scholar 

  • Park TS, Han JY (2012) piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA 109:9337–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park TS, Lee HJ, Kim KH, Kim JS, Han JY (2014) Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci USA 111:12716–12721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry G, Patron N, Bastow R, Matthewman C (2016) Meeting report: gARNet/OpenPlant CRISPR-Cas workshop. Plant Methods 12:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen B, Niemann H (2015) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24:381–396

    Article  CAS  PubMed  Google Scholar 

  • Reardon S (2015) Global summit reveals divergent views on human gene editing. Nat News 528:173

    Article  CAS  Google Scholar 

  • Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138

    Article  CAS  PubMed  Google Scholar 

  • Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y, Mikami K, Hirabayashi M, Kashiwazaki N, Hosoi Y, Murata N, Iritani A (2004) Functional expression of a delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Nat Acad Sci USA 101:6361–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Duraisamy S, Ali J, Kizhakkayil J, Jacob VD, Mohammed MA, Eltigani MA, Amisetty S, Shukla MK, Etches RJ, de Lavoir MC (2014) Characteristics of long-term cultures of avian primordial germ cells and gonocytes. Biol Reprod 90:15

    Article  PubMed  Google Scholar 

  • Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA 110:16526–16531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usman T, Wang Y, Liu C, Wang X, Zhang Y, Yu Y (2015) Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle. Anim Genet 46:371–380

    Article  CAS  PubMed  Google Scholar 

  • van Berkel PH, Welling MM, Geerts M, van Veen HA, Ravensbergen B, Salaheddine M, Pauwels EK, Pieper F, Nuijens JH, Nibbering PH (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20:484–487

    Article  PubMed  Google Scholar 

  • van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769

    Article  PubMed  Google Scholar 

  • Van Eenennaam AL, Muir WM, Hallerman EM (2013) Are unaccountable regulatory delay and political interference undermining the FDA and hurting American competitiveness? Food Drug Policy Forum 3:1–20

    Google Scholar 

  • van Veen HA, Koiter J, Vogelezang CJ, van Wessel N, van Dam T, Velterop I, van Houdt K, Kupers L, Horbach D, Salaheddine M, Nuijens JH, Mannesse ML (2012) Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. J Biotechnol 162:319–326

    Article  PubMed  Google Scholar 

  • Vàzquez-Salat N (2013) Are good ideas enough? The impact of socio-economic and regulatory factors on GMO commercialization. Biol Res 46:317–322

    Article  PubMed  Google Scholar 

  • Vàzquez-Salat N, Houdebine LM (2013) Will GM animals follow the GM plant fate? Transgenic Res 22:5–13

    Article  PubMed  Google Scholar 

  • Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23(4):445–451

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature News 532:293

    Article  CAS  Google Scholar 

  • Wang Y, Lupiani B, Reddy SM, Lamont SJ, Zhou H (2014) RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens. Poult Sci 93:485–493

    Article  CAS  PubMed  Google Scholar 

  • Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34:20–22

    Article  CAS  PubMed  Google Scholar 

  • WHO and UNFAO (World Health Organization and the Food and Agriculture Organization of the United Nations) (2009) Foods derived from modern biotechnology, second edition. UNFAO, Rome. ftp://ftp.fao.org/codex/Publications/Booklets/Biotech/Biotech_2009e.pdf. Accessed 23 Sept 2014

  • Wolt JD, Wang K, Yang B (2016) The regulatory status of genome-edited crops. Plant Biotechnol J 14:510–518

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Ouyang H, Duan B, Pang D, Zhang L, Yuan T, Xue L, Ni D, Cheng L, Dong S, Wei Z, Li L, Yu M, Sun QY, Chen DY, Lai L, Dai Y, Li GP (2012) Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21:537–543

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112:E1530–E1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Feng CY, Hori TS, Plouffe DA, Buchanan JT, Rise ML (2013) Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). Comp Biochem Physiol Part D Genom Proteom 8:317–333

    CAS  Google Scholar 

  • Zhang S, Knight TJ, Stalder KJ, Goodwin RN, Lonergan SM, Beitz DC (2009) Effects of breed, sex and halothane genotype on fatty acid composition of triacylglycerols and phospholipids in pork longissimus muscle. J Anim Breed Genet 126:259–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu P, Dou H, Chen L, Chen L, Lin L, Tan P, Vajta G, Gao J, Du Y, Ma RZ (2013) Handmade cloned transgenic sheep rich in omega-3 Fatty acids. PLoS ONE 8:e55941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The workshop sponsored by the OECD’s Co-operative Research Programme on Biological Resource Management for Sustainable Agricultural Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Doran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tizard, M., Hallerman, E., Fahrenkrug, S. et al. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Res 25, 575–595 (2016). https://doi.org/10.1007/s11248-016-9965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9965-1

Keywords

Navigation