Skip to main content
Log in

Quantum rule for detection probability from Brownian motion in the space of classical fields

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain Born’s rule from the classical theory of random waves in combination with the use of thresholdtype detectors. We consider a model of classical random waves interacting with classical detectors and reproducing Born’s rule. We do not discuss complicated interpretational problems of quantum foundations. The reader can select between the “weak interpretation,” the classical mathematical simulation of the quantum measurement process, and the “strong interpretation,” the classical wave model of the real quantum (in fact, subquantum) phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, Z. Phys., 37, 863–867 (1926).

    Article  ADS  MATH  Google Scholar 

  2. N. P. Landsman, “Algebraic quantum mechanics,” in: Compendium of Quantum Physics: Concepts, Experiments, History, and Philosophy (D. Greenberger, K. Hentschel, F. Weinert, and B. Falkenburg, eds.), Springer, Berlin (2009), pp. 6–9; “The Born rule and its interpretation,” in: Op. cit., pp. 64–70; “Quantization (systematic),” in: Op. cit., pp. 510–513; “Quasi-classical limit,” in: Op. cit., pp. 626–629.

    Chapter  Google Scholar 

  3. G. ’t Hooft, “Quantum gravity as a dissipative deterministic system,” arXiv:gr-qc/9903084v3 (1999).

    Google Scholar 

  4. G. ’t Hooft, “The mathematical basis for deterministic quantum mechanics,” arXiv:quant-ph/0604008v2 (2006).

    Google Scholar 

  5. G. ’t Hooft, Her. Russ. Acad. Sci., 81, 907–911 (2011); arXiv:quant-ph/0701097v1 (2007).

    Google Scholar 

  6. A. Yu. Khrennikov, J. Phys. A, 38, 9051–9073 (2005); arXiv:quant-ph/0505228v4 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. A. Yu. Khrennikov, Found. Phys. Lett., 18, 637–650 (2006).

    Article  MathSciNet  Google Scholar 

  8. A. Yu. Khrennikov, Phys. Let. A, 357, 171–176 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. Yu. Khrennikov, Found. Phys. Lett., 19, 299–319 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Yu. Khrennikov, Nuovo Cimento B, 121, 505–521 (2006); arXiv:hep-th/0604163v1 (2006).

    MathSciNet  ADS  Google Scholar 

  11. A. Yu. Khrennikov, Europhys. Lett., 88, 40005 (2009).

    Article  ADS  Google Scholar 

  12. A. Yu. Khrennikov, Europhys. Lett., 90, 40004 (2010).

    Article  ADS  Google Scholar 

  13. A. Yu. Khrennikov, J. Russian Laser Research, 31, 191–200 (2010).

    Article  Google Scholar 

  14. A. Yu. Khrennikov, M. Ohya, and N. Watanabe, J. Russian Laser Research, 31, 462–468 (2010).

    Article  Google Scholar 

  15. P. Grangier, “Etude expérimentale de propriétés non-classiques de la lumi`ere: interférence à un seul photon,” Doctoral dissertation, Université de Paris-Sud, Centre D’Orsay (1986).

    Google Scholar 

  16. R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).

    MATH  Google Scholar 

  17. A. Yu. Khrennikov, Prog. Theoret. Phys., 128, 31–58 (2012).

    Article  ADS  MATH  Google Scholar 

  18. A. Yu. Khrennikov, B. Nilsson, and S. Nordebo, J. Phys., 361, 012030 (2012); arXiv:1112.5591v1 [quant-ph] (2011).

    Google Scholar 

  19. V. S. Vladimirov, Methods of the Theory of Generalized Functions (Anal. Meth. Spec. Funct., Vol. 6), Taylor and Francis, London (2002).

    MATH  Google Scholar 

  20. I. V. Volovich, “Towards quantum information theory in space and time,” arXiv:quant-ph/0203030v1 (2002).

    Google Scholar 

  21. A. Yu. Khrennikov and I. V. Volovich, “Quantum nonlocality, EPR model, and Bell’s theorem,” in: Proc. 3r d Intl. Sakharov Conference on Physics (Moscow, 24–29 June 2002, A. Semikhatov, M. Vasiliev, and V. Zaikin, eds.), Vol. 2, World Scientific, Singapore (2003), pp. 269–276.

    Google Scholar 

  22. A. Yu. Khrennikov and I. Volovich, “Local realism, contextualism, and loopholes in Bell’s experiments,” in: Foundations of Probability and Physics 2 (Math. Model. Phys., Engin., Cognit. Sci., Vol. 5, A. Yu. Khrennikov, ed.), Växjö Univ. Press, Växjö (2003), pp. 325–343.

    Google Scholar 

  23. A. Yu. Khrennikov and I. Volovich, Soft Computing, 10, 521–529 (2005).

    Article  Google Scholar 

  24. A. Yu. Khrennikov, B. Nilsson, S. Nordebo, and I. Volovich, “Distance dependence of entangled photons in waveguides,” in: Foundations of Probability and Physics 6 (AIP Conf. Proc., Vol. 1424 M. D’Ariano, S.-M. Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, and J.-Å. Larsson, eds.), AIP, Melville, N. Y. (2012), pp. 262–269.

    Google Scholar 

  25. A. Yu. Khrennikov, B. Nilsson, S. Nordebo, and I. V. Volovich, Phys. Scripta, 85, 065404 (2012).

    Article  ADS  Google Scholar 

  26. V. S. Vladimirov and I. V. Volovich, Sov. Math. Dokl., 29, 521–525 (1984).

    MathSciNet  MATH  Google Scholar 

  27. V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 59, 317–335 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 60, 743–765 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Yu. Khrennikov, Superanalysis (Math. Its Appl., Vol. 470), Kluwer, Dordrecht (1999).

    Book  MATH  Google Scholar 

  30. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian] (Series Sov. East Europ. Math., Vol. 1), World Scientific, Singapore (1994).

    Book  Google Scholar 

  31. V. S. Vladimirov, Izv. Math., 60, 67–90 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. S. Vladimirov, “p-Adic numbers in mathematical physics,” in: Advanced Mathematics: Computations and Applications, NCC Publ., Novosibirsk (1995), pp. 128–141.

    Google Scholar 

  33. V. S. Vladimirov, Proc. Steklov Inst. Math., 224, 107–114 (1999).

    Google Scholar 

  34. V. S. Vladimirov, Proc. Steklov Inst. Math., 228, 67–80 (2000).

    Google Scholar 

  35. A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Math. Its Appl., Vol. 309), Kluwer, Dordrecht (1994).

    Book  MATH  Google Scholar 

  36. A. Yu. Khrennikov, Non-Archimedean Analysis and Its Applications [in Russian], Nauka, Moscow (2003).

    MATH  Google Scholar 

  37. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, p-Adic Numbers Ultrametric Anal. Appl., 1, 1–17 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. E. Allahverdyan, A. Yu. Khrennikov, and Th. M. Nieuwenhuizen, Phys. Rev. A, 72, 032102 (2005); arXiv: quant-ph/0412132v1 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  39. L. De la Peña and A. Cetto, The Quantum Dice: An Introduction to Stochastic Electrodynamics, Kluwer, Dordrecht (1996).

    Google Scholar 

  40. Th. M. Nieuwenhuizen, V. Špička, B. Mehmani, M. J. Aghdami, and A. Yu. Khrennikov, eds., Beyond the Quantum, World Scientific, Singapore (2007).

    Google Scholar 

  41. G. Grössing, J. M. Pascasio, and H. Schwabl, Found. Phys., 41, 1437–1453 (2011); arXiv:0812.3561v4 [quant-ph] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Th. Nieuwenhuizen, “Classical phase space density for relativistic hydrogen atom,” in: Quantum Theory: Reconsideration of Foundations 3 (AIP Conf. Proc., Vol. 810, G. Adenier, A. Yu. Khrennikov, and Th. M. Nieuwenhuizen, eds.), AIP, Melville, N. Y. (2006), pp. 198–210; arXiv:quant-ph/0511144v1 (2005).

    Google Scholar 

  43. W. A. Hofer, Found. Phys., 41, 754–791 (2011); arXiv:1002.3468v5 [quant-ph] (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. H. De Raedt, K. De Raedt, and K. Michielsen, Europhys. Lett., 69, 861–867 (2005).

    Article  ADS  Google Scholar 

  45. K.-E. Eriksson, “Reduction of the wave-packet can be understood within quantum mechanics,” in: Foundations of Probability and Physics 6 (AIP Conf. Proc., Vol. 1424, M. D’Ariano, S.-M. Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, and J.-?A. Larsson, eds.), AIP, Melville, N. Y. (2012), pp. 72–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Khrennikov.

Additional information

Dedicated to the memory of Vasilli Sergeevich Vladimirov

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 174, No. 2, pp. 342–352, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennikov, A.Y., Nilsson, B. & Nordebo, S. Quantum rule for detection probability from Brownian motion in the space of classical fields. Theor Math Phys 174, 298–306 (2013). https://doi.org/10.1007/s11232-013-0027-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0027-z

Keywords

Navigation