Skip to main content
Log in

Unconventional Approach to Orbital-Free Density Functional Theory Derived from a Model of Extended Electrons

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An equation proposed by Levy, Perdew and Sahni (Phys. Rev. A 30:2745, 1984) is an orbital-free formulation of density functional theory. However, this equation describes a bosonic system. Here, we analyze on a very fundamental level, how this equation could be extended to yield a formulation for a general fermionic distribution of charge and spin. This analysis starts at the level of single electrons and with the question, how spin actually comes into a charge distribution in a non-relativistic model. To this end we present a space-time model of extended electrons, which is formulated in terms of geometric algebra. Wave properties of the electron are referred to mass density oscillations. We provide a comprehensive and non-statistical interpretation of wavefunctions, referring them to mass density components and internal field components. It is shown that these wavefunctions comply with the Schrödinger equation, for the free electron as well as for the electron in electrostatic and vector potentials. Spin-properties of the electron are referred to intrinsic field components and it is established that a measurement of spin in an external field yields exactly two possible results. However, it is also established that the spin of free electrons is isotropic, and that spin-dynamics of single electrons can be described by a modified Landau-Lifshitz equation. The model agrees with the results of standard theory concerning the hydrogen atom. Finally, we analyze many-electron systems and derive a set of coupled equations suitable to characterize the system without any reference to single electron states. The model is expected to have the greatest impact in condensed matter theory, where it allows to describe an N-electron system by a many-electron wavefunction Ψ of four, instead of 3N variables. The many-body aspect of a system is in this case encoded in a bivector potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  2. Thomas, L.H.: Proc. Cambr. Philos. Soc 23, 542 (1927)

    Article  MATH  ADS  Google Scholar 

  3. Fermi, E.: Rend. Accad. Naz. Lincei 6, 602 (1927)

    Google Scholar 

  4. Fermi, E.: Z. Phys. 48, 73 (1928)

    Article  ADS  Google Scholar 

  5. Zhou, B., Wang, Y.A.: J. Chem. Phys. 124, 081107 (2006)

    Article  ADS  Google Scholar 

  6. Wang, Y.A., Govind, N., Carter, E.A.: Phys. Rev. B 60, 16350 (1999)

    Article  ADS  Google Scholar 

  7. von Weizsäcker, C.F.: Z. Phys. 96, 431 (1935)

    Article  ADS  MATH  Google Scholar 

  8. Perdew, J.P., Constantin, L.A.: Phys. Rev. B 75, 155109 (2007)

    Article  ADS  Google Scholar 

  9. Kohn, W., Sham, J.S.: Phys. Rev. A 140, 1136 (1965)

    MathSciNet  Google Scholar 

  10. Levy, M., Perdew, J.P., Sahni, V.: Phys. Rev. A 30, 2745 (1984)

    Article  ADS  Google Scholar 

  11. March, N.H.: Phys. Lett. A 113, 446 (1986)

    Article  ADS  Google Scholar 

  12. March, N.H.: J. Comput. Chem. 8, 375 (1987)

    Article  Google Scholar 

  13. Holas, A., March, N.H.: Phys. Rev. A 44, 5521 (1991)

    Article  ADS  Google Scholar 

  14. Misner, C.W., Thorne, K.S., Zurek, W.H.: Phys. Today 62, 40 (2009)

    Article  Google Scholar 

  15. Donati, O., Missiroli, G.F., Pozzi, G.: Am. J. Phys. 41, 639 (1973)

    Article  ADS  Google Scholar 

  16. Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M., Odom, B.: Phys. Rev. Lett. 97, 030802 (2006)

    Article  ADS  Google Scholar 

  17. de Broglie, L.: La Reinterpretation de la Mecanique Ondulatoire. Gauthier-Villars, Paris (1971)

    Google Scholar 

  18. Valentini, A.: Phys. World 22, 32 (2009)

    Google Scholar 

  19. Bohm, D.: Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  20. Bohm, D.: Phys. Rev. 85, 180 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hestenes, D.: J. Math. Phys. 14, 893 (1973)

    Article  ADS  Google Scholar 

  22. Hestenes, D.: Found. Phys. 15, 63 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hestenes, D.: Found. Phys. 20, 1213 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  24. Eigler, D.: in “Quantum Leaps” on BBC2, May 23, 2002. Quote courtesy of Mike Ross, IBM Almaden

  25. Nikolic, H.: Found. Phys. 37, 1563 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Hestenes, D., Sobczyk, G.: Clifford Algebra in Geometric Calculus. Reidel, Dordrecht (1984)

    Book  Google Scholar 

  27. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  28. Hofer, W.A.: Physica A 256, 178 (1998)

    Article  Google Scholar 

  29. Keller, J.: Theory of the Electron. Kluwer, Dordrecht (2001)

    MATH  Google Scholar 

  30. Gull, S., Lasenby, A., Doran, C.: Found. Phys. 23, 1175 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  31. Gull, S., Lasenby, A., Doran, C.: Found. Phys. 23, 1293 (1993)

    Google Scholar 

  32. Born, M.: Z. Phys. 37, 863 (1926)

    ADS  Google Scholar 

  33. Born, M.: Z. Phys. 38, 803 (1926)

    ADS  Google Scholar 

  34. Born, M.: Gött. Nachr. Math. Phys. Kl. 1, 146 (1926)

    Google Scholar 

  35. Davisson, C., Germer, L.H.: Nature 119, 558 (1927)

    Article  ADS  Google Scholar 

  36. Abraham, M., Becker, R.: Electricity and Magnetism. Blackie, London (1937)

    Google Scholar 

  37. Lorentz, H.A.: Theory of Electrons, 2nd edn. (1915). Reprint Dover, New York (1997)

  38. Perdew, J., Zunger, A.: Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  39. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  40. Delamotte, B.: Am. J. Phys. 72, 170 (2004)

    Article  ADS  Google Scholar 

  41. Crommie, M.F., Lutz, C.P., Eigler, D.M.: Nature 363, 524 (1993)

    Article  ADS  Google Scholar 

  42. Gerlach, W., Stern, O.: Z. Phys. 9, 353 (1922)

    Article  ADS  Google Scholar 

  43. Challinor, A.D., Lasenby, A.N., Gull, S.F., Doran, C.J.L.: Phys. Lett. A 218, 128 (1996)

    Article  ADS  Google Scholar 

  44. Uhlenbeck, G.E., Goudsmit, S.: Naturwissenschaften 47, 953 (1925)

    ADS  Google Scholar 

  45. Pauli, W.: Z. Phys. 41, 81 (1927)

    Article  ADS  Google Scholar 

  46. Landau, L.D., Lifshitz, E.M.: Phys. Z. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  47. Chambers, R.C.: Phys. Rev. Lett. 5, 3 (1960)

    Article  ADS  Google Scholar 

  48. Osakabe, N., et al.: Phys. Rev. A 34, 815 (1986)

    Article  ADS  Google Scholar 

  49. Compton, A.H.: Phys. Rev. 21, 483 (1923)

    Article  ADS  Google Scholar 

  50. Eddington, A.S.: Relativity Theory of Protons and Electrons. Cambridge University Press, Cambridge (1936)

    Google Scholar 

  51. Kilmister, C.W.: Eddington’s Search for a Fundamental Theory: A Key to the Universe. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  52. Wang, Y.S., Carter, E.A.: In: Progress in Theoretical Chemistry and Physics, pp. 157–184. Kluwer, Dordrecht (2000)

    Google Scholar 

  53. Slater, J.C.: Phys. Rev. 34, 1293 (1929)

    Article  ADS  Google Scholar 

  54. Kantorovic, L.: Quantum Theory of the Solid State: An Introduction. Kluwer, Dordrecht (2004)

    Google Scholar 

  55. Gunnarson, O., Lundqvist, B.: Phys. Rev. B 13, 4274 (1974)

    Article  ADS  Google Scholar 

  56. Schrödinger, E.: Naturwissenschaften 23, 807 (1935), 823; 844

    Article  ADS  Google Scholar 

  57. Hofer, W.A., Fisher, A.J.: Phys. Rev. Lett. 91, 036803 (2003)

    Article  ADS  Google Scholar 

  58. Aspect, A., et al.: Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  59. Bell, J.S.: Physics 1, 195 (1964)

    Google Scholar 

  60. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  61. Perdew, J.P., Ruzsinszky, A., Constantin, L.A., Sun, J., Csonka, G.I.: J. Chem. Theory Comput. 5, 902 (2009)

    Article  Google Scholar 

  62. Blaylock, G.: Am. J. Phys. 78, 11 (2009)

    Google Scholar 

  63. Cangi, A., Lee, D., Elliott, P., Burke, K.: (2010). 1002.1351 [cond-mat]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner A. Hofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, W.A. Unconventional Approach to Orbital-Free Density Functional Theory Derived from a Model of Extended Electrons. Found Phys 41, 754–791 (2011). https://doi.org/10.1007/s10701-010-9517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9517-0

Keywords

Navigation