Skip to main content
Log in

Investigation of Static and Dynamic Pull-in Instability in a FGP Micro-Beam

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

In this paper, static and dynamic behavior of a fully clamped functionally graded piezoelectric micro-beam, subjected to simultaneous electrostatic and piezoelectric actuations is investigated. The micro-beam is composed of silicon and PZ4 as a piezoelectric material. Applying DC piezoelectric voltage results in the generation of an axial force and as a result the equivalent bending stiffness of the micro-beam changes. The tunability of the bending stiffness due to piezoelectric actuation is used to stabilize the pull-in instability. The nonlinear governing equation of the motion is derived using Hamiltonian principle and discretized to a single degree of freedom system using Galerkin method. The static and dynamic pull-in voltages corresponding to various piezoelectric voltages are determined. The ratio of the static to dynamic pull-in voltages is in good agreement with those of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Osterberg, I. S., & Senturia, S. D. (1997). A test chip for MEMS material property measurement using electrostatically actuated test structure. Journal of Microelectro mechanical system, 6(2), 107–118.

    Article  Google Scholar 

  2. Zhang, L. X., & Zhao, Y. P. (2003). Electromechanical model of RF MEMS switches. Journal of Microsystem Technology, 9, 420–426.

    Article  Google Scholar 

  3. Hung, N., & Senturia, S. D. (1999). Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs. Journal of Microelectromechanical Systems, 8(3), 280–289.

    Article  Google Scholar 

  4. Senturia, S. D. (1998). CAD challenges for microsensors, microactuators, and micro sytem. IEEE, 86, 1611–1626.

    Article  Google Scholar 

  5. Li, G., & Aluru, N. R. (2003). Efficient mixed-domain analysis of electrostatic MEMS. Transactions on Computer-Aided Design of Integrated Circuits and Systems, IEEE, 22, 11228–11242.

    Google Scholar 

  6. Nathanson, H. C., Newell, W. E., Wickstrom, R. A., & Davis, J, Jr. (1997). The resonant gate transistor. Transaction on Electron Devices, 14(3), 117–133.

    Article  Google Scholar 

  7. Seeger, J. I., & Crary, S. B. (1997). Stabilization of electrostatically actuated MEMS devices. International Conference on Solid State Sensors and Actuators, 11, 1133–1136.

    Google Scholar 

  8. Chu, P. B., & Pister, K. S. J. (1994). Analysis of closed-loop control of parallel-plate electrostatic microgrippers. International Conferences Robotics and Automation, IEEE, 1, 820–825.

    Google Scholar 

  9. Taschini, S., Baltes, H., & Korvink, J. G. (2000). Non-linear analysis of electrostatic actuation in MEMS with arbitrary geometry. International Conference on Modeling and Simulation of Microsystem, IEEE, 14, 485–488.

    Google Scholar 

  10. Kalyanaraman, R., Packirisamy, M., & Baht, R. B. (2005). Nonlinear pull-in study of electrostatically actuzted MEMS structures. IEEE, 3, 7803–9588.

    Google Scholar 

  11. Sadeghian, H., Rezazadeh, Gh, Malekpour, G., & Shafipour, A. (2006). Pull-in voltage of fixed-fixed type MEMS switches with variative electrostatic area. Journal of Sensors and Transducers, 66, 526–533.

    Google Scholar 

  12. Nabian, A., Rezazadeh, Gh, Haddad-Drafshi, M., & Tahmasebi, A. (2008). Mechanical behavior of a circular micro plate subjected to uniform hydrostatic and non-uniform electrostatic pressure. Journal of Microsystem Technology, 14(1), 235–246.

    Google Scholar 

  13. Sendai, B. V. (1984). An elasticity solution for functionally graded beams. Journal of Composite Science and Technology, 61, 689–696.

    Google Scholar 

  14. Bian, Z. G., Lim, C. W., & Chen, W. Q. (2006). On functionally graded beams with integrated surface piezoelectric layers. Journal of Composite Structures, 72(3), 339–351.

    Article  Google Scholar 

  15. Rezazadeh, Gh, Tahmasebi, A., & Zubstov, M. (2006). Application of piezoelectric layers in electrostatic MEM actuators: Controlling pull-in voltage. Journal of Microsystem Technology, 12, 1163–1170.

    Article  Google Scholar 

  16. Zamanian, M., & Khadem, S. E. (2010). Nonlinear vibration of an electrically actuated microresonator tuned by combined DC piezoelectric and electric actuations. Journal of Smart Material and Structures., 19(1), 150–176.

    Article  Google Scholar 

  17. Rezazadeh, Gh, Fathalilou, M., & Shabani, R. (2009). Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. Journal of Microsystem Technology, 15(12), 1785–1791.

    Article  Google Scholar 

  18. Mahmoodi, S. N., Daqaq, M. F., & Jalili, N. (2009). On the nonlinear-flexural response of piezoelectrically driven micro cantilever sensors. Journal of Sensors and Actuators A, 153, 171–179.

    Article  Google Scholar 

  19. Mahmoodi, S. N., & Jalili, N. (2009). Piezoelectrically actuated micro cantilevers: An experimental nonlinear vibration analysis. Journal of Sensors and Actuators A., 150, 131–136.

    Article  Google Scholar 

  20. Xiang, H. J., & Shi, Z. F. (2009). Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. European Journal of MechanicsA/Solids, 28(2), 338–346.

    Article  MathSciNet  MATH  Google Scholar 

  21. Susanto, K. (2009). Vibration analysis of piezoelectric laminated slightly curved beams using distributed transfer function method. Journal of Solids Structure., 46, 1564–1573.

    Article  MATH  Google Scholar 

  22. Simsek, M. (2010). Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Journal of Nuclear Engineering and Design., 240(4), 697–705.

    Article  Google Scholar 

  23. Alibeigloo, A. (2010). Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers. Journal of Composite Structures., 92(6), 1535–1543.

    Article  Google Scholar 

  24. Yang, X. D., Tang, Y. Q., Chen, L. Q., & Lim, C. W. (2010). Dynamic stability of axially accelerating Timoshenko beam: Averaging method. European Journal of Mechanics A/Solids., 29, 81–90.

    Article  MathSciNet  Google Scholar 

  25. Ghazavi, M. R., Rezazadeh, Gh, & Azizi, S. (2010). Pure parametric excitation of a micro cantilever beam actuated by piezoelectric layers. Journal of Applied Mathematical Modelling., 34(12), 41960–44207.

    Article  MathSciNet  Google Scholar 

  26. Alastia, B. M., Rezazadeh, Gh, Borgheei, A., Minaei, S., & Habibifar, R. (2011). On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Journal of Composite Structures, 93(6), 1516–1525.

    Article  Google Scholar 

  27. Azizi, S., Rezazadeh, Gh, Ghazavi, M., & Khadem, S. E. (2011). Stabilizing the pull- in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Journal of Applied Mathematical Modelling, 35(10), 4796–4815.

    Article  MATH  Google Scholar 

  28. Azizi, S., Ghazavi, M. R., Khadem, S. E., Rezazadeh, Gh, & Cetinkaya, C. (2013). Application of piezoelectric actuation to regularize the chaotic response of an piezoelectrically actuated micro-beam. Journal of Nonlinear Dynamic, 73(1–2), 853–867.

    Article  MathSciNet  MATH  Google Scholar 

  29. Azizi, S., Ghazavi, M. R., Ahmadian, I., & Cetinkaya, C. (2014). Tuning the primary resonance of a micro-resonator, using piezoelectric actuation. Journal of Nonlinear Dynamic, 76(1), 839–852.

    Article  Google Scholar 

  30. Azizi, S., Rezazadeh, Gh, Ghazavi, M. R., & Khadem, S. E. (2012). Parametric excitation of a piezoelectrically actuated system near Hopf bifurcation. Journal of Applied Mathematical Modeling., 36, 1529–1549.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ghazavi, M. R., Rezazadeh, Gh, & Azizi, S. (2009). Finite element analysis of static and dynamic pull-in instability considering damping effects. Journal of Sensors Transducers, 103, 132–143.

    Google Scholar 

  32. Das, K., & Batra, R. C. (2009). Symmetry breaking snap-through, and pull-in instabilities under dynamic loading of microelectro mechanical shallowarch. Journal of Smart Structures, 18, 54–67.

    Google Scholar 

  33. Ananthasuresh, G. K., Gupta, R. K., &Senturia, S. D. (1996). An approach to macromodeling of MEMS for nonlinear dynamic simulation. International Conference of Mechanica Engineering Congress and Exposition (MEMS), Atlanta, ASME, pp 401–407.

  34. Krylov, S., & Maimon, R. (2003). Pull-in dynamic of an elastic beam actuated by distributed electrostatic force. Journal of Vibration and Acoustic., 126(3), 332–342.

    Article  Google Scholar 

  35. Younis, M., Alsalem, F., & Jordy, D. (2007). The response of clamped-clamped micro-beams under mechanical shock. Journal of Non-Linear Mechanics, 42, 643–657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Kivi, A., Azizi, S. & Marzbanrad, J. Investigation of Static and Dynamic Pull-in Instability in a FGP Micro-Beam. Sens Imaging 16, 2 (2015). https://doi.org/10.1007/s11220-014-0104-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-014-0104-x

Keywords

Navigation