Skip to main content

Advertisement

Log in

Post-capture investigations of hydrothermal vent macro-invertebrates to study adaptations to extreme environments

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Typical survival strategies, developed by macro-invertebrates at a variety of reducing marine habitats including deep-sea hydrothermal vents, have been the subject of the laboratory experimentation over the past three decades. This review provides an insight into the international efforts that have converged on the area of laboratory maintenance of such species whose nutritional requirements are outside the usual scope of metazoan life. We emphasise the methodology used in post-capture manipulations that are designed to identify the physiological limits of adaptation to the harsh conditions known at various vent sites worldwide, and to understand the mechanisms involved. The concepts behind appropriately designed experiments and the choice of suitable model organisms for such physiological studies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt C, Gaill F, Felbeck H (2001) Anaerobic sulfur metabolism in thiotrophic symbioses. J Exp Biol 204:741–750

    PubMed  CAS  Google Scholar 

  • Arndt C, Schiedek D, Felbeck H (1998) Metabolic responses of the hydrothermal vent tube worm Riftia pachyptila to severe hypoxia. Marine Ecol-Prog Series 174:151–158

    CAS  Google Scholar 

  • Beech IB, Gaylarde CC (1999) Recent advances in the study of biocorrosion – an overview. Rev Microbiol 30:117–190

    Article  Google Scholar 

  • Bright M, Keckeis H, Fisher CR (2000) An autoradiographic examination of carbon fixation, transfer, and utilization in the Riftia pachyptila symbiosis. Mar Biol 136:621–632

    Article  Google Scholar 

  • Chausson F, Sanglier S, Leize E, Hagege A, Bridges CR, Sarradin PM, Shillito B, Lallier FH, Zal F (2004) Respiratory adaptations of a deep-sea hydrothermal vent crab. Micron 35:27–29

    Article  PubMed  Google Scholar 

  • Childress JJ, Mickel TJ (1980) O consumption rate of the deep-sea hydrothermal vent crab. Am Zool 20:834

    Google Scholar 

  • Colaço A, Martins I, Laranjo M, Pires L, Leal C, Prieto C, Costa V, Lopes H, Rosa D, Dando PR, Serrão-Santos R. Annual spawning of the hydrothermal vent mussel, Bathymodiolus azoricus, under controlled aquarium, conditions at atmospheric pressure (in press J Exp Mar Biol Ecol)

  • Company R, Serafim A, Bebianno MJ, Cosson R, Shillito B, Fiala-Medioni A (2004) Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 58:377–381

    Article  PubMed  CAS  Google Scholar 

  • Daughney CJ, Rioux JP, Fortin D, Pichler T (2004) Laboratory investigation of the role of bacteria in the weathering of basalt near deep sea hydrothermal vents. Geomicrobiol J 21:21–31

    Article  CAS  Google Scholar 

  • Distel DL, Felbeck H (1988a) Pathways of inorganic carbon fixation in the endosymbiont-bearing lucinid clam Lucinoma aequizonata 1 purification and characterization of the endosymbiotic bacteria. J Exp Zool 247:1–10

    Article  CAS  Google Scholar 

  • Distel DL, Felbeck H (1988b) Pathways of inorganic carbon fixation in the endosymbiont-bearing lucinid clam Lucinoma aequizonata 2 analysis of the individual contributions of host and symbiont cells to inorganic carbon assimilation. J Exp Zool 247:11–22

    Article  CAS  Google Scholar 

  • Dixon DR, Dixon LRJ, Shillito B, Gwynn JP (2002) Background and induced levels of DNA damage in Pacific deep-sea vent polychaetes: the case for avoidance. Cahier de Biologie Marine 43:333–336

    Google Scholar 

  • Dixon DR, Pruski AM, Dixon LRJ (2004) The effects of hydrostatic pressure change on DNA integrity in the hydrothermal-vent mussel Bathymodiolus azoricus: implications for future deep-sea mutagenicity studies. Mut Res-Fun Mol Mech Mutagen 552:235–246

    Article  CAS  Google Scholar 

  • Dixon DR (2005) Metazoans living around deep-sea vents: evidence for avoidance mechanisms In Book of abstract “Investigating Life in Extreme Environments”, Sant Feliu de Guixols, Spain, 2005; on line at: http://www.esf.org/conferences/ILEEn, pp 20

  • Fiala-Medioni A, Mckiness ZP, Dando P, Boulegue J, Mariotti A, Alayse-Danet AM, Robinson JJ, Cavanaugh CM (2002) Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043

    Article  Google Scholar 

  • Goffredi SK, Childress JJ, Desaulniers NT, Lallier FH (1997a) Sulfide acquisition by the vent worm Riftia pachyptila Appears to be Via Uptake Of HS, Rather Than H2S. J Exp Biol 200:2609–2616

    CAS  Google Scholar 

  • Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, Hammond D (1997b) Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external p-co2 and upon proton-equivalent ion transport by the worm. J Exp Biol 200:883–896

    CAS  Google Scholar 

  • Gorodezky LA, Childress JJ (1994) effects of sulfide exposure history and hemolymph thiosulfate on oxygen-consumption rates and regulation in the hydrothermal vent crab Bythograea thermydron. Mar Biol 120:123–131

    CAS  Google Scholar 

  • Gros O, Darrasse A, Durand P, Frenkiel L, Moueza M (1996a) Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62:2324–2330

    CAS  Google Scholar 

  • Gros O, De Wulf-Durand P, Frenkiel L, Moueza M (1998) Putative Environmental Transmission of sulfur-oxidizing bacterial symbionts in tropical lucinid bivalves inhabiting various environments. FEMS Microbiol Lett 160:257–262

    Article  CAS  Google Scholar 

  • Gros O, Duplessis MR, Felbeck H (1999) embryonic development and endosymbiont transmission mode in the symbiotic clam Lucinoma aequizonata (Bivalvia : Lucinidae). Invertebr Reprod Dev 36:93–103

    Google Scholar 

  • Gros O, Frenkiel L, Felbeck H (2000) Sulfur-oxidizing endosymbiosis in Divaricella quadrisulcata (Bivalvia: Lucinidae): morphological, ultrastructural, and phylogenetic analysis. Symbiosis 29:293–317

    CAS  Google Scholar 

  • Gros O, Frenkiel L, Moueza M (1996b) Gill ultrastructure and symbiotic bacteria in the tropical lucinid, Linga pensylvanica (Linne). Symbiosis 20:259–280

    Google Scholar 

  • Gros O, Frenkiel L, Moueza M (1997) Embryonic, larval, and post-larval development in the symbiotic clam Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol 116:86–101

    Article  Google Scholar 

  • Gros O, Frenkiel L, Moueza M (1998b) Gill filament differentiation, experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicularis (Bivalvia : Lucinidae). Invertebr Reprod Dev 34:219–231

    Google Scholar 

  • Gros O, Liberge M, Felbeck H (2003a) Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-endosymbionts. Mar Biol 142:57–66

    Google Scholar 

  • Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H (2003b) Detection of the Free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6264–6267

    Article  CAS  Google Scholar 

  • Kadar E, Bettencourt R, Costa V, Santos RS, Lobo-Da-Cunha A, Dando P (2005a) Experimentally induced endosymbiont loss, re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. J Exper Mar Biol Ecol 318:99–110

    Article  Google Scholar 

  • Kadar E, Costa V, Santos RS, Lopes H (2005b) Behavioural response to the bioavailability of inorganic mercury in the hydrothermal mussel Bathymodiolus azoricus. J Exp Biol 208:505–513

    Article  PubMed  CAS  Google Scholar 

  • Kadar E, Costa V, Martins I, Santos RS, Powell JJ (2005c) Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb and Hg) of macro-invertebrate habitats at hydrothermal vents along the Mid Atlantic Ridge. Hydrobiologia 548:191–205

    Article  CAS  Google Scholar 

  • Kadar E, Santos RS, Powell JJ Biological Factors Influencing tissue compartmentalization of trace metals in the deep-sea hydrothermal vent bivalve Bathymodiolus azoricus at geochemically distinct vent sites of the Mid-Atlantic Ridge (in press a, Environmental Research)

  • Kadar E, Azevedo C (2006) Unidentified extracellular prokaryotes within the byssal threads of the deep-sea vent mussel Bathymodiolus azoricus Parasitology 133: 1–5

    Article  Google Scholar 

  • Kadar E, Costa V, Santos RS, Powell JJ (2006) Tissue partitioning of micro-essential metals in the vent bivalve Bathymodiolus azoricus and associated organisms (endosymbiont bacteria and parasite polychaete) from geochemically distinct vents of the Mid-Atlantic Ridge. Env Res 101:221–229

    Article  CAS  Google Scholar 

  • Kadar E, Costa V First report on the micro-essential metal concentrations in bivalve shells from deep-sea hydrothermal vents (in press c Journal of Sea Research)

  • Kadar E, Santos RS, Lobo-Da-Cunha A, Dando P Spermatogenesis of Bathymodiolus azoricus in captivity matching reproductive behaviour at deep-sea hydrothermal vents (in press d J Exper Mar Biol Ecol)

  • Lee RW (2003) Thermal tolerances of deep-sea hydrothermal vent animals from the northeast pacific. Biolog Bull 205:98–101

    Google Scholar 

  • Mergeay M (2000) Bacteria adapted to industrial biotopes: the metal resistant ralstonia. In: Storz G, Hengge-Aronis (eds) Bacterial Stress Responses. ASM Press Washingotn DC, USA, pp 403–414

    Google Scholar 

  • Mickel TJ, Childress JJ (1980) Temperature, pressure responses of the galapagos hydrothermal vent crab, Bythograea thermydron. Am Zool 20:834

    Google Scholar 

  • Mickel TJ, Childress JJ (1982a) Effects of pressure and pressure acclimation on activity and oxygen-consumption in the bathypelagic mysid Gnathophausia ingens, Deep-Sea Research Part a. Oceanograp Res Papers 29:1293–1301

    Article  Google Scholar 

  • Mickel TJ, Childress JJ (1982b) Effects of pressure and temperature on the ecg and heart-rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). Biological Bulletin 162:70–82

    Google Scholar 

  • Mickel TJ, Childress JJ (1982c) Effects of temperature, pressure, and oxygen concentration on the oxygen-consumption rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). Physiolog Zool 55:199–207

    Google Scholar 

  • Page HM, Fiala-Medioni A, Childress JJ (1991) Experimental evidence for filter-feeding by the hydrothermal vent mussel, Bathymodiolus thermophilus, Deep Sea Research Part A. Oceanograp Res Papers 38:1455–1461

    Article  Google Scholar 

  • Postec A, Urios L, Lesongeur F, Ollivier B, Querellou J, Godfroy A (2005) Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems. Curr Microbiol 50:138–144

    Article  PubMed  CAS  Google Scholar 

  • Pradillon F, Le Bris N, Shillito B, Young CM, Gaill F (2005) Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompejana. J Exp Biol 208:1551–1561

    Article  PubMed  Google Scholar 

  • Pradillon F, Shillito B, Chervin JC, Hamel G, Gaill F (2004) Pressure vessels for in vivo studies of deep-sea fauna. High Pressure Res 24:237–246

    Article  Google Scholar 

  • Quetin LB, Childress JJ (1980) Observations on the swimming activity of 2 bathypelagic mysid species maintained at high hydrostatic pressures, Deep-Sea Research Part a. Oceanograph Res Papers 27:383–391

    Article  Google Scholar 

  • Ravaux J, Gaill F, Le Bris N, Sarradin PM, Jollivet D, Shillito B (2003) Heat-shock response and temperature resistance in the deep-sea vent shrimp Rimicaris exoculata. J Exp Biol 206:2345–2354

    Article  PubMed  Google Scholar 

  • Sanders NK, Childress JJ (1985) Unusual oxygen binding-properties in the blood of the deep-sea hydrothermal vent crab Bythograea thermydron. Am Zool 25:A119

    Google Scholar 

  • Sanders NK, Childress JJ (1992) Specific effects of thiosulfate and l-lactate on hemocyanin-o2 affinity in a brachyuran hydrothermal vent crab. Mar Biol 113:175–180

    Google Scholar 

  • Sarradin PM, Caprais JC, Riso R, Kerouel R, Aminot A (1999) Chemical environment of the hydrothermal mussel communities in the Lucky Strike and Menez Gwen vent fields, Mid-Atlantic Ridge. Cahiers de Biologie Marine 40:93–104

    Google Scholar 

  • Shillito B, Jollivet D, Sarradin PM, Rodier P, Lallier F, Desbruyeres D, Gaill F (2001) Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on deep-sea vent smoker walls. Mar Ecol-Prog Series 216:141–149

    Google Scholar 

  • Shillito B, Le Bris N, Gaill A, Rees JF, Zal F (2004) First access to live Alvinellas. High Pressure Res 24:169–172

    Article  Google Scholar 

  • Shillito B, Le Bris N, Gaill Hourdez S, Ravaux J, Cottin D, Caprais JC, Jollivet D, Gaill F (2006) Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata. J Exp Biol 209:945–955

    Article  PubMed  Google Scholar 

  • Van Dover CL, Lutz RA (2004) Experimental ecology at deep-sea hydrothermal vents: a perspective. J Exp Mar Biol Ecol 300:273–307

    Article  Google Scholar 

  • Von Cosel R, Comtet T, Krylova E M (1999) Bathymodiolus (Bivalvia : Mytilidae) from hydrothermal vents on the Azores Triple Junction and the Logatchev hydrothermal field, Mid-Atlantic Ridge. Veliger 42:218–248

    Google Scholar 

Download references

Acknowledgments

The research was undertaken under the scope of the research project FISIOVENT (Physiological adaptations to extreme conditions at deep sea hydrothermal vents) funded by FCT (POCTI/MAR/55547/2004). We acknowledge the postdoctoral fellowship (SFRH/BPD/19625/2004) to EK. The kind efforts of the two anonymous reviewers and of David Dixon to improve this paper are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eniko Kadar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadar, E., Powell, J.J. Post-capture investigations of hydrothermal vent macro-invertebrates to study adaptations to extreme environments. Rev Environ Sci Biotechnol 5, 193–201 (2006). https://doi.org/10.1007/s11157-006-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-006-0006-z

Keywords

Navigation