Skip to main content
Log in

Catalytic oxidation of 4-tert-butyltoluene to 4-tert-butylbenzaldehyde over cobalt modified APO-5 zeolite

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The APO-5 zeolites modified with cobalt and some other metals were prepared by the hydrothermal method and applied to the selective oxidation of 4-tert-butyltoluene to 4-tert-butylbenzaldehyde using tert-butylhydroperoxide (TBHP) as the oxidant. The XRD, SEM and FTIR identified the structures of the prepared samples. Influences of the modified metals and various reaction parameters, such as reaction temperature, reaction time, content of catalyst, TBHP/substrate molar ratio and nature of solvent on the activity and selectivity of aldehyde were evaluated. CoAPO-5 exhibited higher catalytic activity than the others and showed a maximum conversion of 4-tert-butyltoluene of 15.5 % with 73.4 % selectivity towards 4-tert-butylbenzaldehyde under the optimized conditions. Repeated runs showed that the catalyst was stable for at least five cycles without obvious changes of catalytic activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Chen M, Zhou R, Zheng X (2003) Appl Catal A: Gen 242:329–334

    Article  CAS  Google Scholar 

  2. Jones CW, Carter NG, Oakes SC, Wilson SL, Johnstone A (1998) J Chem Technol Biotechnol 71:111–120

    Article  CAS  Google Scholar 

  3. Amin AA, Beattie JK (2003) Org Process Res Dev 7:879–882

    Article  CAS  Google Scholar 

  4. van de Water LGA, Kaza A, Beattie JK, Masters AF, Maschmeyer T (2007) Chem Eur J 13:8037–8044

    Article  Google Scholar 

  5. Tian HZ, Yan SG, Zhang TK, Tao YS, Zhan JJ, Yang FL (2003) Trans IChemE 81:1043–1046

    Article  CAS  Google Scholar 

  6. Vaze AS, Sawant SB, Pangarkar VG (1998) J Appl Electrochem 28:623–626

    Article  CAS  Google Scholar 

  7. Tissot P, Do Duc H, John O (1981) J Appl Electrochem 11:473–476

    Article  CAS  Google Scholar 

  8. Lozar J, Bejan D, Savall A (2002) J Appl Electrochem 32:839–844

    Article  CAS  Google Scholar 

  9. Chen M, Zheng XM (2002) React Kinet Catal Lett 76(1):189–195

    Article  CAS  Google Scholar 

  10. Yu WH, Zhou CH, Tong DS, Xu TN (2012) J Mol Catal A: Chem 365:194–202

    Article  CAS  Google Scholar 

  11. Yu WH, Zhou CH, Fan YX, Lou CY, Tong DS, Fang M (2009) Indian J Chem 48A:946–950

    CAS  Google Scholar 

  12. Yu WH, Zhang ZR, Wang H, Ge ZH, Pinnavaia TJ (2007) Micropor Mesopor Mat 104:151–158

    Article  CAS  Google Scholar 

  13. Li WY, Xu YH, Wang JQ, Zhai ZB, Yan ZY, Yang YL (2007) Catal Lett 119:327–331

    Article  CAS  Google Scholar 

  14. Hartmann M, Kevan L (1999) Chem Rev 99:635–664

    Article  CAS  Google Scholar 

  15. Khimyak YZ, Klinowski J (2001) Phys Chem Chem Phys 3:1544–1551

    Article  CAS  Google Scholar 

  16. Höchtl M, Jentys A, Vinek H (1999) Micropor Mesopor Mat 31:271–285

    Article  Google Scholar 

  17. Zhou WY, Huang K, Cao MM, Sun FA, He MY, Chen ZX (2015) Reac Kinet Mech Cat 115:341–353

    Article  CAS  Google Scholar 

  18. Chen JS, Sankar G, Thomas JM, Xu R, Greaves GN, Waller D (1992) Chem Mater 4:1373–1380

    Article  CAS  Google Scholar 

  19. Chen JS, Thomas JM (1994) J Chem Soc Chem Commun:603–604

  20. Simmance K, Sankar G, Bell RG, Prestipino C, van Beek W (2010) Phys Chem Chem Phys 12:559–562

    Article  CAS  Google Scholar 

  21. Chen BH, Huang YN (2009) Micropor Mesopor Mat 123:71–77

    Article  CAS  Google Scholar 

  22. Shao L, Li Y, Yu JH, Xu RR (2012) Inorg Chem 51:225–229

  23. Belen-Cordero DS, Kim C, Hwang SJ, Hernandez-Maldonado AJ (2009) J Phys Chem C 113:8035–8049

    Article  CAS  Google Scholar 

  24. Belen-Cordero DS, Mendez-Gonzalez S, Hernandez-Maldonado AJ (2008) Micropor Mesopor Mat 109:287–297

    Article  CAS  Google Scholar 

  25. Velu S, Shah N, Jyothi TM, Sivasanker S (1999) Micropor Mesopor Mat 33:61–75

    Article  CAS  Google Scholar 

  26. Junghans U, Suttkus C, Lincke J, Lässig D, Krautscheid H, Gläser R (2015) Micropor Mesopor Mat 216:151–160

    Article  CAS  Google Scholar 

  27. Thao NT, Huyen LTK (2015) Chem Eng J 279:840–850

    Article  Google Scholar 

  28. Wusimana A, Lu CD (2015) Appl Organometal Chem 29:254–258

    Article  Google Scholar 

  29. Lu YC, Lin YH, Wang DJ, Wang LL, Xie TF, Jiang TF (2011) Nano Res 4:1144–1152

    Article  CAS  Google Scholar 

  30. Shi SB, Yang Y, Xu JP, Li L, Zhang XS, Hu GH, Dang ZM (2013) J Alloys Compd 576:59–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (21403018) and Prospective Jiont Research Project on the Industry, Education and Research of Jiangsu Province (BY2014037-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyang He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Pan, J., Sun, F. et al. Catalytic oxidation of 4-tert-butyltoluene to 4-tert-butylbenzaldehyde over cobalt modified APO-5 zeolite. Reac Kinet Mech Cat 117, 789–799 (2016). https://doi.org/10.1007/s11144-015-0958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0958-5

Keywords

Navigation