Skip to main content

Advertisement

Log in

The Use of Pseudo-Equilibrium Constant Affords Improved QSAR Models of Human Plasma Protein Binding

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop accurate in silico predictors of Plasma Protein Binding (PPB).

Methods

Experimental PPB data were compiled for over 1,200 compounds. Two endpoints have been considered: (1) fraction bound (%PPB); and (2) the logarithm of a pseudo binding constant (lnKa) derived from %PPB. The latter metric was employed because it reflects the PPB thermodynamics and the distribution of the transformed data is closer to normal. Quantitative Structure-Activity Relationship (QSAR) models were built with Dragon descriptors and three statistical methods.

Results

Five-fold external validation procedure resulted in models with the prediction accuracy (R2) of 0.67 ± 0.04 and 0.66 ± 0.04, respectively, and the mean absolute error (MAE) of 15.3 ± 0.2% and 13.6 ± 0.2%, respectively. Models were validated with two external datasets: 173 compounds from DrugBank, and 236 chemicals from the US EPA ToxCast project. Models built with lnKa were significantly more accurate (MAE of 6.2–10.7 %) than those built with %PPB (MAE of 11.9–17.6 %) for highly bound compounds both for the training and the external sets.

Conclusions

The pseudo binding constant (lnKa) is more appropriate for characterizing PPB binding than conventional %PPB. Validated QSAR models developed herein can be applied as reliable tools in early drug development and in chemical risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

%PPB:

Percent plasma protein binding

5FCV:

5-fold external cross-validation

AD:

Applicability domain

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

CCR:

Correct classification rate (balanced classification accuracy)

HSA:

Human serum albumin

kNN:

k nearest neighbors

lnKa:

Natural logarithm of the pseudo binding constant imputed from %PPB

LogP:

Octanol-water partition coefficient

LOO-CV:

Leave-one-out cross validation

MAE:

Mean absolute error

QSAR:

Qualitative structure-activity relationship

R2 :

Coefficient of determination

RED:

Rapid equilibrium dialysis

RF:

Random forest

RMSE:

Root mean square error

SVM:

Support vector machine

Tc:

Tanimoto similarity coefficient

REFERENCES

  1. Bow DAJ, Perry JL, Simon JD, Pritchard JB. The impact of plasma protein binding on the renal transport of organic anions. J Pharmacol Exp Ther. 2006;316(1):349–55.

    Article  PubMed  CAS  Google Scholar 

  2. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR. Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002;64(9):1355–74.

    Article  PubMed  CAS  Google Scholar 

  3. Mager DE, Xu C. Quantitative structure-pharmacokinetic relationships. Expert Opin Drug Met. 2011;7(1):63–77.

    Article  Google Scholar 

  4. Banker MJ, Clark TH. Plasma/serum protein binding determinations. Curr Drug Metab. 2008;9(9):854–9.

    Article  PubMed  CAS  Google Scholar 

  5. Kuchinskiene Z, Carlson LA. Composition, concentration, and size of low density lipoproteins and of subfractions of very low density lipoproteins from serum of normal men and women. J Lipid Res. 1982;23(5):762–9.

    PubMed  CAS  Google Scholar 

  6. Waters NJ, Jones R, Williams G, Sohal B. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J Pharm Sci. 2008;97(10):4586–95.

    Article  PubMed  CAS  Google Scholar 

  7. Hall LM, Hall LH, Kier LB. QSAR modeling of beta-lactam binding to human serum proteins. J Comput Aided Mol Des. 2003;17(2):103–18.

    Article  PubMed  CAS  Google Scholar 

  8. Lobell M, Sivarajah V. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pK(a) and AlogP98 values. Mol Divers. 2003;7(1):69–87.

    Article  PubMed  CAS  Google Scholar 

  9. Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93(6):1480–94.

    Article  PubMed  CAS  Google Scholar 

  10. Votano JR, Parham M, Hall LMH, Kier LB, Oloff S, Tropsha A. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. J Med Chem. 2006;49(24):7169–81.

    Article  PubMed  CAS  Google Scholar 

  11. Hall LM, Hall LH, Kier LB. Methods for predicting the affinity of drugs and drug-like compounds for human plasma proteins: a review. Curr Comput-Aid Drug. 2009;5(2):90–105.

    Article  CAS  Google Scholar 

  12. Zsila F, Bikadi Z, Malik D, Hari P, Pechan I, Berces A, et al. Evaluation of drug–human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics. 2011;27(13):1806–13.

    Article  PubMed  CAS  Google Scholar 

  13. Li H, Chen Z, Xu X, Sui X, Guo T, Liu W, et al. Predicting human plasma protein binding of drugs using plasma protein interaction QSAR analysis (PPI-QSAR). Biopharm Drug Dispos. 2011;32(6):333–42.

    Article  PubMed  Google Scholar 

  14. Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today. 2012;17(9–10):475–85.

    Article  PubMed  CAS  Google Scholar 

  15. Pellegatti M, Pagliarusco S, Solazzo L, Colato D. Plasma protein binding and blood-free concentrations: which studies are needed to develop a drug? Expert Opin Drug Metab Toxicol. 2011;7(8):1009–20.

    Article  PubMed  CAS  Google Scholar 

  16. Moda TL, Torres LG, Carrara AE, Andricopulo AD. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models. Bioinformatics. 2008;24(19):2270–1.

    Article  PubMed  CAS  Google Scholar 

  17. Wetmore BA, Wambaugh JF, Ferguson SS, Sochaski MA, Rotroff DM, Freeman K, et al. Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci. 2012;125(1):157–74.

    Article  PubMed  CAS  Google Scholar 

  18. Wetmore BA, Wambaugh JF, Ferguson SS, Li L, Clewell HJ, Judson RS et al. The relative impact of incorporating pharmacokinetics on predicting in vivo hazard and mode-of-action from high-throughput in vitro toxicity assays. Toxicol Sci. 2013. doi:10.1093/toxsci/kft012.

  19. Fourches D, Muratov E, Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010;50(7):1189–204.

    Article  PubMed  CAS  Google Scholar 

  20. Zheng WF, Tropsha A. Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Model. 2000;40(1):185–94.

    Article  CAS  Google Scholar 

  21. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  22. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Model. 2003;43(6):1947–58.

    Article  CAS  Google Scholar 

  23. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM TIST. 2011;2(3):1–27.

    Article  Google Scholar 

  24. Golbraikh A, Shen M, Xiao ZY, Xiao YD, Lee KH, Tropsha A. Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des. 2003;17(2–4):241–53.

    Article  PubMed  CAS  Google Scholar 

  25. Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003;22(1):69–77.

    Article  CAS  Google Scholar 

  26. Rucker C, Rucker G, Meringer M. y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model. 2007;47(6):2345–57.

    Article  PubMed  Google Scholar 

  27. Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 2010;29(6–7):476–88.

    Article  CAS  Google Scholar 

  28. Kruhlak NL, Contrera JF, Benz RD, Matthews EJ. Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products. Adv Drug Deliv Rev. 2007;59(1):43–55.

    Article  PubMed  CAS  Google Scholar 

  29. CDER/CBER. Guidance for industry:pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling. U.S. Department of Health and Human Services Food and Drug Administration. 2003.

  30. Saiakhov R, Stefan L, Klopman G. Multiple computer-automated structure evaluation model of the plasma protein binding affinity of diverse drugs. Perspect Drug Discov Des. 2000;19(1):133–55.

    Article  CAS  Google Scholar 

  31. Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–39.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang LY, Zhu H, Oprea TI, Golbraikh A, Tropsha A. QSAR modeling of the blood–brain barrier permeability for diverse organic compounds. Pharm Res. 2008;25(8):1902–14.

    Article  PubMed  CAS  Google Scholar 

  33. Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, et al. Use of in vitro HTS-derived concentration–response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect. 2011;119(3):364–70.

    Article  PubMed  CAS  Google Scholar 

  34. Gleeson MP. Plasma protein binding affinity and its pelationship to molecular structure: an in silico analysis. J Med Chem. 2006;50(1):101–12.

    Article  Google Scholar 

  35. Maggiora GM. On outliers and activity cliffs why QSAR often disappoints. J Chem Inf Model. 2006;46(4):1535.

    Article  PubMed  CAS  Google Scholar 

  36. Mock D, Malik M. Distribution of biotin in human plasma: most of the biotin is not bound to protein. Am J Clin Nutr. 1992;56(2):427–32.

    PubMed  CAS  Google Scholar 

  37. Sandherr M, Maschmeyer G. Pharmacology and metabolism of voriconazole and Posaconazole in the treatment of invasive aspergillosis: review of the literature. Eur J Med Res. 2011;16(4):139–44.

    Article  PubMed  CAS  Google Scholar 

  38. Kethireddy S, Andes D. CNS pharmacokinetics of antifungal agents. Expert Opin Drug Metab Toxicol. 2007;3(4):573–81.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS and DISCLOSURES

We thank Drs. Alexander Golbraikh and Denis Fourches for their useful comments on this study. This work was supported, in part, by grants from National Institutes of Health (GM66940 and R21GM076059), The Johns Hopkins Center for Alternatives to Animal Testing (20011-21), and the National Natural Science Foundation of China (20977065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Shen Liu or Alexander Tropsha.

Electronic supplementary material

ESM 1

(DOCX 179kb)

ESM 2

(XLSX 288kb)

ESM 3

(XLSX 65kb)

ESM 4

(XLSX 65kb)

ESM 5

(XLSX 22kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XW., Sedykh, A., Zhu, H. et al. The Use of Pseudo-Equilibrium Constant Affords Improved QSAR Models of Human Plasma Protein Binding. Pharm Res 30, 1790–1798 (2013). https://doi.org/10.1007/s11095-013-1023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1023-6

KEY WORDS

Navigation