Skip to main content

Advertisement

Log in

Synergistic Effect of Amlodipine and Atorvastatin in Reversing LDL-Induced Endothelial Dysfunction

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Statins and certain calcium channel blockers may improve nitric oxide (NO) release and endothelial function through various mechanisms, but their combined effects are not well understood.

Methods

The separate versus combined effects of amlodipine (AML) and atorvastatin (AT) on NO and peroxynitrite (ONOO) were measured in human umbilical vein endothelial cells (HUVEC) in the presence and absence of low-density lipoprotein (LDL) using electrochemical nanosensors.

Results

The combination of AML (5 μmol/l) and AT (3-6 μmol/l) directly stimulated NO release that was about twofold greater than the sum of their separate effects (p < 0.05). This synergistic activity is attributed to enhanced endothelial NO synthase (eNOS) function and decreased cytotoxic ONOO. LDL (100 mg/dl) caused a dysfunction of HUVEC manifested by a 60% reduction in NO and an almost twofold increase in ONOO. Treatment with AML/AT partially reversed the effects of LDL on endothelial function, including a 90% increase in NO and 50% reduction in ONOO. Small-angle X-ray diffraction analysis indicates that AML and AT are lipophilic and share an overlapping molecular location in the cell membrane that could facilitate electron transfer for antioxidant mechanisms.

Conclusion

These findings indicate a synergistic effect of AML and AT on an increase in NO concentration, reduction of nitroxidative stress. Also, AML/AT partially restored the NO level of LDL-induced dysfunctional endothelium. Their combined effects may be enhanced by antioxidant properties related to their intermolecular actions in the cell membrane and an increase in the expression and coupling of endothelial nitric oxide synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. S. Oemar, M. R. Tschudi, N. Godoy, V. Brovkovich, T. Malinski, and T. F. Luscher. Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 97(25):2494–2498 (1998).

    PubMed  CAS  Google Scholar 

  2. D. G. Harrison, P. C. Freiman, M. L. Armstrong, M. L. Marcus, and D. D. Heistad. Alterations of vascular reactivity in atherosclerosis. Circ. Res. 61:74–80 (1987).

    Google Scholar 

  3. J. K. Liao. Endothelium and acute coronary syndromes. Clin. Chem. 44:1799–1808 (1998).

    PubMed  CAS  Google Scholar 

  4. G. Kojda and D. G. Harrison. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc. Res. 43:562–571 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. M. R. Tschudi, M. Barton, N. A. Bersinger, P. Moreau, F. Cosentino, G. Noll, T. Malinski, and T. F. Luscher. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J. Clin. Invest. 98(4):899–905 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. O. A. Paniagua, M. B. Bryant, and J. A. Panza. Role of endothelial nitric oxide in shear stress-induced vasodilation in human microvasculature. Diminished activity in hypertensive and hypercholesterolemic patients. Circulation 103:1752–1758 (2001).

    PubMed  CAS  Google Scholar 

  7. J. A. Panza, A. A. Quyyumi, J. E. Brush, and S. E. Epstein. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med. 323:22–27 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. S. Taddei, A. Virdis, P. Mattei, and A. Salvetti. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 21:929–933 (1993).

    PubMed  CAS  Google Scholar 

  9. M. Rodriguez-Porcel, L. O. Lerman, J. Herrmann, T. Sawamura, C. Napoli, and A. Lerman. Hypercholesterolemia and hypertension have synergistic deleterious effects on coronary endothelial function. Arterioscler. Thromb. Vasc. Biol. 23:885–891 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S. John and R. E. Schmieder. Impaired endothelial function in arterial hypertension and hypercholesterolemia: Potential mechanisms and differences. J. Hypertens. 18:363–374 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. J. D. Neaton and D. Wentworth. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor Intervention Trial Research Group. Arch. Intern. Med. 152:56–64 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. F. Thomas, K. Bean, L. Guize, S. Quentzel, P. Argyriadis, and A. Benetos. Combined effects of systolic blood pressure and serum cholesterol on cardiovascular mortality in young (<55 years) men and women. Eur. Heart J. 23:528–535 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. U. Landmesser, H. Cai, S. Dikalov, L. McCann, J. Hwang, H. Jo, S. M. Holland, and D. G. Harrison. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. U. Landmesser, S. Dikalov, S. R. Price, L. McCann, T. Fukai, S. M. Holland, W. E. Mitch, and D. G. Harrison. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111:1201–1209 (2003).

    PubMed  CAS  Google Scholar 

  15. Y. Ohara, T. E. Peterson, and D. G. Harrison. Hypercholesterolemia increases endothelial superoxide anion production. J. Clin. Invest. 91(6):2546–2551 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. J. K. Liao, W. S. Shin, W. Y. Lee, and S. L. Clark. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J. Biol. Chem. 270:319–324 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. L. Vergnani, S. Hatrik, F. Ricci, A. Passaro, N. Manzoli, G. Zuliani, V. Brovkovych, R. Fellin, and T. Malinski. Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of l-arginine availability. Circulation 101(11):1261–1266 (2000).

    PubMed  CAS  Google Scholar 

  18. R. P. Mason and R. F. Jacob. Membrane microdomains and vascular biology: Emerging role in atherogenesis. Circulation 107:2270–2273 (2003).

    Article  PubMed  Google Scholar 

  19. D. G. Harrison. Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Invest. 100:2153–2157 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. X. Zhang and T. H. Hintze. Amlodipine releases nitric oxide from canine coronary microvessels: An unexpected mechanism of action of a calcium channel-blocking agent. Circulation 97:576–580 (1998).

    PubMed  CAS  Google Scholar 

  21. T. J. Anderson, I. T. Meredith, A. C. Yeung, B. Frei, A. P. Selwyn, and P. Ganz. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N. Engl. J. Med. 332:488–493 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. G. B. Mancini, G. C. Henry, C. Macaya, B. J. O'Neill, A. L. Pucillo, R. G. Carere, T. J. Wargovich, H. Mudra, T. F. Luscher, M. I. Klibaner, H. E. Haber, A. C. Uprichard, C. J. Pepine, and B. Pitt. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) Study. Circulation 94(3):240–243 (1996).

    Google Scholar 

  23. S. Wolfrum, K. S. Jensen, and J. K. Liao. Endothelium-dependent effects of statins. Arterioscler. Thromb. Vasc. Biol. 23:729–736 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. R. P. Mason, M. F. Walter, and R. F. Jacob. Effects of HMG–CoA reductase inhibitors on endothelial function: Role of microdomains and oxidative stress. Circulation 109:II34–II41 (2004).

    PubMed  Google Scholar 

  25. L. Kalinowski, I. T. Dobrucki, and T. Malinski. Cerivastatin potentiates nitric oxide release and eNOS expression through inhibition of isoprenoids synthesis. J. Physiol. Pharmacol. 53:585–595 (2002).

    PubMed  CAS  Google Scholar 

  26. R. P. Mason, L. Kalinowski, R. F. Jacob, A. M. Jacoby, and T. Malinski. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation 112:3795–3801 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. R. P. Mason, P. Marche, and T. H. Hintze. Novel vascular biology of third-generation L-type calcium channel antagonists: Ancillary actions of amlodipine. Arterioscler. Thromb. Vasc. Biol. 23:2155–2163 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. R. P. Mason, M. F. Walter, C. A. Day, and R. F. Jacob. Intermolecular differences for HMG-CoA reductase inhibitors contribute to distinct pharmacologic and pleiotropic actions. Am. J. Cardiol. 96[suppl]:11F–23F (2005).

    Article  PubMed  CAS  Google Scholar 

  29. S. E. Nissen, E. M. Tuzcu, P. Libby, P. D. Thompson, M. Ghali, D. Garza, L. Berman, H. Shi, E. Buebendorf, and E. J. Topol. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 292:2217–2226 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. P. S. Sever, B. Dahlof, and N. R. Poulter. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361:1149–1158 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. H. M. Colhoun, D. J. Betteridge, P. N. Durrington, G. A. Hitman, Neil HAW, S. J. Livingstone, M. J. Thomason, M. I. Mackness, V. Charlton-Menys, and J. H. Fuller. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): Multicentre randomised placebo-controlled trial. Lancet 364:685–696 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. P. Sever, B. Dahlof, N. Poulter, H. Wedel, G. Beevers, M. Caulfield, R. Collins, S. Kjeldsen, A. Kristinsson, G. McInnes, J. Mehlsen, M. Niemenem, E. O'Brien, and J. Ostergren. Potential synergy between lipid-lowering and blood-pressure-lowering in the Anglo-Scadinavian Cardiac Outcomes Trail. Eur. Heart J. 27:2982–2988 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. D. J. M. Delsing, J. W. Jukema, M. A. van de Wiel, J. J. Emeis, A. van der Laarse, L. M. Havekes, and H. M. G. Princen. Differential effects of amlodipine and atorvastatin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice. J. Cardiovasc. Pharmacol. 42:63–70 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. L. Kalinowski, L. W. Dobrucki, V. Brovkovich, and T. Malinski. Increased nitric oxide bioavailability in endothelial cells contributes to the pleiotropic effect of cerivastatin. Circulation 105:933–938 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. J. Xue, X. Ying, J. Chen, Y. Xian, and L. Jin. Amperometric ultramicrosensors for peroxynitrite detection and its application toward single myocardial cells. Anal. Chem. 72:5313–5321 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. V. Lvovich and A. Scheeline. Amperometric sensors for simultaneous superoxide and hydrogen peroxide detection. Anal. Chem. 69:454–462 (1997).

    Article  CAS  Google Scholar 

  37. T. Malinski, and Z. Taha. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. P. Vallance, S. Patton, K. Bhagat, R. MacAllister, M. Radomski, S. Moncada, and T. Malinski. Direct measurement of nitric oxide in human beings. Anal. Chem. 346:153–154 (1995).

    CAS  Google Scholar 

  39. J. E. Bennett and T. Malinski. Conductive polymeric porphyrin films: application in the electrocatalytic oxidation of hydrazine. Chem. Mater. 3:490–495 (1991).

    Article  CAS  Google Scholar 

  40. A. D. Bangham, M. M. Standish, and J. C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13:238–252 (1965).

    PubMed  CAS  Google Scholar 

  41. D. W. Chester, L. G. Herbette, R. P. Mason, A. F. Joslyn, D. J. Triggle, and D. E. Koppel. Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers. Biophys. J. 52(6):1021–1030 (1987).

    Article  PubMed  CAS  Google Scholar 

  42. R. P. Mason, G. E. Gonye, D. W. Chester, and L. G. Herbette. Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological membranes. Biophys. J. 55(4):769–778 (1989).

    PubMed  CAS  Google Scholar 

  43. R. P. Mason and R. F. Jacob. X-ray diffraction analysis of membrane structure changes with oxidative stress. In D. Armstrong (ed.), Methods in Molecular Biology: Ultrastructural and Molecular Biology Protocols. Vol 193. Humana Press Inc., Totowa, NJ, 2002, pp. 71–80.

    Google Scholar 

  44. T. N. Tulenko, M. Chen, P. E. Mason, and R. P. Mason. Physical effects of cholesterol on arterial smooth muscle membranes: Evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J. Lipid. Res. 39:947–956 (1998).

    PubMed  CAS  Google Scholar 

  45. L. G. Herbette, T. MacAlister, T. F. Ashavaid, and R. A. Colvin. Structure-function studies of canine cardiac sarcolemmal membranes. II. Structural organization of the sarcolemmal membrane as determined by electron microscopy and lamellar X-ray diffraction. Biochim. Biophys. Acta. 812(3):609–623 (1985).

    Article  PubMed  CAS  Google Scholar 

  46. K. K. Koh, M. J. Quon, S. H. Han, W. J. Chung, J. Y. Ahn, Y. H. Seo, M. H. Kang, T. H. Ahn, I. S. Choi, and E. K. Shin. Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation 110:3687–3692 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. H. E. Andrews, K. R. Bruckdorfer, R. C. Dunn, and M. Jacobs. Low-density lipoproteins inhibit endothelium-dependent relaxation in rabbit aorta. Nature 327(6119):237–239 (1987).

    Article  PubMed  CAS  Google Scholar 

  48. K. A. Pritchard, L. Groszek, D. M. Smalley, W. C. Sessa, M. Wu, P. Villalon, M. S. Wolin, and M. B. Stemerman. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ. Res. 77(3):510–518 (1995).

    PubMed  CAS  Google Scholar 

  49. D. W. Stepp, J. Ou, A. W. Ackerman, S. Welak, D. Klick, K. A. Pritchard Jr. Native LDL and minimally oxidized LDL differentially regulate superoxide anion in vascular endothelium in situ. Am J Physiol, Heart Circ Physiol. 283(2):H750–H759 (2002).

    CAS  Google Scholar 

  50. F. Vidal, C. Colome, J. Martinez-Gonzalez, and L. Badimon. Atherogenic concentrations of native low-density lipoproteins down-regulate nitric-oxide-synthase mRNA and protein levels in endothelial cells. Eur. J. Biochem. 252(3):378–384 (1998).

    Article  PubMed  CAS  Google Scholar 

  51. J. Martinez-Gonzalez, B. Raposo, C. Rodriguez, and L. Badimon. 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition prevents endothelial NO synthase downregulation by atherogenic levels of native LDLs: balance between transcriptional and posttranscriptional regulation. Arterioscler. Thromb. Vasc. Biol. 21(5):804–809 (2001).

    PubMed  CAS  Google Scholar 

  52. Z. Ou, J. Ou, A. W. Ackerman, K. T. Oldham, K. A. Pritchard Jr. L-4F, an apolipoprotein A-1 mimetic, restores nitric oxide and superoxide anion balance in low-density lipoprotein-treated endothelial cells. Circulation 107(11):1520–1524 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. U. Laufs, V. La Fata, J. Plutzky, and J. K. Liao. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97(12):1129–1135 (1998).

    PubMed  CAS  Google Scholar 

  54. A. H. Wagner, T. Kohler, U. Ruckschloss, I. Just, and M. Hecker. Improvement of nitric oxide-dependent vasodilation by HMG–CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc. Biol. 20:61–69 (2000).

    PubMed  CAS  Google Scholar 

  55. S. Wassmann, U. Laufs, K. Muller, C. Konkol, K. Ahlbory, A. T. Baumer, W. Linz, M. Bohm, and G. Nickenig. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 22:300–305 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. O. Feron, C. Dessy, J. P. Desager, and J. L. Balligand. Hydroxy-methylgluataryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 103:113–118 (2001).

    PubMed  CAS  Google Scholar 

  57. R. P. Mason, M. F. Walter, M. W. Trumbore, E. G. Olmstead Jr., and P. E. Mason. Membrane antioxidant effects of the charged dihydropyridine calcium antagonist amlodipine. J. Mol. Cell. Cardiol. 31:275–281 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. F. Franzoni, G. Santoro, F. Regoli, Y. Plantinga, F. R. Femia, A. Carpi, and F. Galetta. An in vitro study of the peroxyl and hydroxyl radical scavenging capacity of the calcium antagonist amlodipine. Biomed. Pharmacother. 58:423–426 (2004).

    PubMed  CAS  Google Scholar 

  59. M. McIntyre, C. A. Hamilton, D. D. Rees, J. L. Reid, and A. F. Dominiczak. Sex differences in the abundance of endothelial nitric oxide in a model of genetic hypertension. Hypertension 30:1517–1524 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Malinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, R.P., Kubant, R., Heeba, G. et al. Synergistic Effect of Amlodipine and Atorvastatin in Reversing LDL-Induced Endothelial Dysfunction. Pharm Res 25, 1798–1806 (2008). https://doi.org/10.1007/s11095-007-9491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9491-1

Key Words

Navigation