Skip to main content

Nitric Oxide and Cardiovascular Diseases: Cardioprotection, Complications and Therapeutics

  • Chapter
  • First Online:
Nitric Oxide: From Research to Therapeutics

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 22))

  • 361 Accesses

Abstract

Perpetually increasing cardiovascular complications significantly contribute to economic slow-down in developing nations. Indeed, adverse cardiovascular events are among the world’s greatest mortality factors. The underlying cause behind these events is hypertension, which in advance stages, manifests with the development of multifactorial outcomes ultimately leading to organ damage and subsequent death of the individual. One of the major reasons behind the onset of hypertension is endothelial dysfunction, a physiological and clinical situation where normal functions of vascular endothelium are altered. This alteration results in a lack of proper production as well as the distribution of nitric oxide, which is a potent vasorelaxant. Efforts to maintain adequate NO signaling are always in practice. One of such approaches is targeting cytochrome b5 reductase3 at the myoendothelial junction, an anatomical location between endothelial cells and vascular smooth muscle cells. This chapter highlights the production and distribution of NO by nitric oxide synthases and cytochrome b5 reductase3, respectively, its contribution in various cascades of vascular homeostasis and its established role in cardiovascular disorders followed by different strategies and a glimpse of the clinical studies considered to improve NO signaling in vivo.

Gaurav Kumar and Sanjay Kumar Dey have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flora GD, Nayak MK (2019) A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des 25(38):4063–4084

    Article  CAS  PubMed  Google Scholar 

  2. Hermann M, Flammer A, Lüscher TF (2006) Nitric oxide in hypertension. J Clin Hypertens 8:17–29

    Article  CAS  Google Scholar 

  3. Kundu S, Dey SK, Kumar G, Kumar V, Ramachandran S, Kartha CC (2021) Novel anti-hypertensive cardioprotective composition comprising of dispiro[1h-perimidine-2(3h),2''(3''h)-[1h]perimidine. Indian Patent Application 202111026998 A

    Google Scholar 

  4. Kundu S, Dey SK, Thelma B, Prabhakar P, Kovuru G, Saini M (2018) An anti-hypertensive cardio-protective composition. Indian Patent Application 201811005899 A

    Google Scholar 

  5. Kundu S, Dey SK, Thelma B, Prabhakar P, Maulik S (2021) Quinolone-based anti-hypertensive cardio-protective composition. Indian Patent Application 202111026777 A

    Google Scholar 

  6. Kundu S, Thelma B, Maulik S, Prabhakar P, Dey SK (2017) Novel anti-hypertensive and anti-cardiac hypertrophic compounds. Indian Patent Application 201711036983 A

    Google Scholar 

  7. Farah C, Michel LYM, Balligand J-L (2018) Nitric oxide signaling in cardiovascular health and disease. Nat Rev Cardiol 15(5):292

    Google Scholar 

  8. Ghimire K, Altmann HM, Straub AC, Isenberg JS (2017) Nitric oxide: what’s new to NO? Am J Physiol Cell Physiol 312(3):C254–C262

    Article  PubMed  Google Scholar 

  9. Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discovery 14(9):623–641

    Article  CAS  PubMed  Google Scholar 

  10. Goldenbaum GC, Dickerson RR (1993) Nitric oxide production by lightning discharges. J Geophys Res Atmos 98(D10):18333–18338

    Article  Google Scholar 

  11. Murad F (1999) Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel lecture). Angew Chem Int Ed 38(13–14):1856–1868

    Article  CAS  Google Scholar 

  12. Zhao Y, Vanhoutte PM, Leung SWS (2015) Vascular nitric oxide: beyond eNOS. J Pharmacol Sci 129(2):83–94

    Article  CAS  PubMed  Google Scholar 

  13. Chen JP, Yang RT, Buzanowski MA, Cichanowicz JE (1990) Cold selective catalytic reduction of nitric oxide for flue gas applications. Ind Eng Chem Res 29(7):1431–1435

    Article  CAS  Google Scholar 

  14. Fuchgott RF (1988) Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. Vasodilatation: vascular smooth muscle, peptides, autonomic nerves, and endothelium 401–14

    Google Scholar 

  15. Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 25(1):171–191

    Article  CAS  PubMed  Google Scholar 

  16. SoRelle R (1998) Nobel prize awarded to scientists for nitric oxide discoveries. Circulation 98(22):2365–2366

    Article  CAS  PubMed  Google Scholar 

  17. Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Springer p 213–54

    Google Scholar 

  18. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  19. Vanhoutte PM (2009) How we learned to say NO. Arterioscler Thromb Vasc Biol 29(8):1156–1160

    Article  CAS  PubMed  Google Scholar 

  20. Boissel J-P, Schwarz PM, Förstermann U (1998) Neuronal-type NO synthase: transcript diversity and expressional regulation. Nitric Oxide 2(5):337–349

    Article  CAS  PubMed  Google Scholar 

  21. Choate JK, Danson EJF, Morris JF, Paterson DJ (2001) Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. American Journal of Physiology-Heart and Circulatory Physiology. 281(6):H2310–H2317

    Article  CAS  PubMed  Google Scholar 

  22. Piech A, Dessy C, Havaux X, Feron O, Balligand J-L (2003) Differential regulation of nitric oxide synthases and their allosteric regulators in heart and vessels of hypertensive rats. Cardiovasc Res 57(2):456–467

    Article  CAS  PubMed  Google Scholar 

  23. Schwarz PM, Kleinert H, Förstermann U (1999) Potential functional significance of brain-type and muscle-type nitric oxide synthase I expressed in adventitia and media of rat aorta. Arterioscler Thromb Vasc Biol 19(11):2584–2590

    Article  CAS  PubMed  Google Scholar 

  24. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci 96(2):657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X (2014) Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. J Inorg Biochem 130:130–140

    Article  CAS  PubMed  Google Scholar 

  26. Masters BSS, McMillan K, Sheta EA, Nishimura JS, Roman LJ, Martasek P (1996) Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO as a cellular signal. FASEB J 10(5):552–558

    Article  CAS  PubMed  Google Scholar 

  27. Sagami I, Daff S, Shimizu T (2001) Intra-subunit and Inter-subunit electron transfer in neuronal nitric-oxide synthase effect of calmodulin on heterodimer catalysis. J Biol Chem 276(32):30036–30042

    Article  CAS  PubMed  Google Scholar 

  28. Costa ED, Rezende BA, Cortes SF, Lemos VS (2016) Neuronal nitric oxide synthase in vascular physiology and diseases. Front Physiol 7:206

    Google Scholar 

  29. Lowenstein CJ, Padalko E (2004) iNOS (NOS2) at a glance. J Cell Sci 117(14):2865–2867

    Article  CAS  PubMed  Google Scholar 

  30. Balligand J-L, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M et al (1994) Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 269(44):27580–27588

    Google Scholar 

  31. De Vera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL, Morris SM et al (1996) Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci 93(3):1054–1059

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23(2):75–93

    Article  CAS  PubMed  Google Scholar 

  33. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG et al (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 17(11):2479–2488

    Article  CAS  PubMed  Google Scholar 

  34. Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF (1991) Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD-and FMN-containing flavoprotein. Proc Natl Acad Sci 88(17):7773–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MacMicking J, Xie Q-w, Nathan C. Nitric oxide and macrophage function. Annual review of immunology. 1997;15(1):323–50.

    Google Scholar 

  36. Haywood GA, Tsao PS, Von Der Leyen HE, Mann MJ, Keeling PJ, Trindade PT et al (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93(6):1087–1094

    Article  CAS  PubMed  Google Scholar 

  37. Kirkebøen KA, Strand ØA (1999) The role of nitric oxide in sepsis–an overview. Acta Anaesthesiol Scand 43(3):275–288

    Article  PubMed  Google Scholar 

  38. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M et al (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81(4):641–650

    Article  CAS  PubMed  Google Scholar 

  39. Schini VB, Junquero DC, Scott-Burden T, Vanhoutte PM (1991) Interleukin-1 β induces the production of an L-arginine-derived relaxing factor from cultured smooth muscle cells from rat aorta. Biochem Biophys Res Commun 176(1):114–121

    Article  CAS  PubMed  Google Scholar 

  40. Sharshar T, Gray F, de la Grandmaison GL, Hopklnson NS, Ross E, Dorandeu A et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. The Lancet 362(9398):1799–1805

    Article  CAS  Google Scholar 

  41. Spink J, Cohen J, Evans TJ (1995) The cytokine Responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase activation by nuclear factor-κB. J Biol Chem 270(49):29541–29547

    Article  CAS  PubMed  Google Scholar 

  42. Balligand J-L, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS et al (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270(24):14582–14586

    Article  CAS  PubMed  Google Scholar 

  43. Petroff MGV, Kim SH, Pepe S, Dessy C, Marbán E, Balligand J-L et al (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca 2+ release in cardiomyocytes. Nat Cell Biol 3(10):867–873

    Article  CAS  PubMed  Google Scholar 

  44. Wallerath T, Gath I, Aulitzky WE, Pollock JS, Kleinert H, Förstermann U (1997) Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets. Thromb Haemost 78(01):163–167

    Google Scholar 

  45. Cortese-Krott MM, Rodriguez-Mateos A, Sansone R, Kuhnle GGC, Thasian-Sivarajah S, Krenz T et al (2012) Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood J Am Soc Hematol 120(20):4229–4237

    CAS  Google Scholar 

  46. Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T et al (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107(7):2943–2951

    Article  CAS  PubMed  Google Scholar 

  47. Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem 276(18):14533–14536

    Article  CAS  PubMed  Google Scholar 

  48. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113(13):1708–1714

    Article  PubMed  Google Scholar 

  49. Li H, Wallerath T, Münzel T, Förstermann U (2002) Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide 7(3):149–164

    Article  CAS  PubMed  Google Scholar 

  50. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89(2):481–534

    Article  CAS  PubMed  Google Scholar 

  51. Mutchler SM, Straub AC (2015) Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 49:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ et al (1999) Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry 38(50):16413–16418

    Article  CAS  PubMed  Google Scholar 

  53. Kumar G, Dey SK, Kundu S (2020) Cytochrome B5 Reductase 3 Can Be Approached As A Contemporary Therapeutic Target to Restrain Hypertension. FASEB J 34(S1):1

    Article  Google Scholar 

  54. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′: 5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci 74(8):3203–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Denninger JW, Marletta MA (1999) Guanylate cyclase and the⋅ NO/cGMP signaling pathway. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1411(2–3):334–50

    Google Scholar 

  56. Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP (2000) Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 184(3):409–420

    Article  CAS  PubMed  Google Scholar 

  57. Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C, Bolotina VM (1999) Mechanism of nitric oxide–induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 84(2):210–219

    Article  CAS  PubMed  Google Scholar 

  58. Ledoux J, Werner ME, Brayden JE, Nelson MT (2006) Calcium-activated potassium channels and the regulation of vascular tone. Physiology 21(1):69–78

    Article  CAS  PubMed  Google Scholar 

  59. Weisbrod RM, Griswold MC, Yaghoubi M, Komalavilas P, Lincoln TM, Cohen RA (1998) Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide. Br J Pharmacol 125(8):1695–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322(5901):587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Altaany Z, Ju Y, Yang G, Wang R (2014) The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal 7(342):ra87-ra

    Google Scholar 

  62. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P et al (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci 109(23):9161–9166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kanagy NL, Szabo C, Papapetropoulos A (2017) Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol 312(5):C537–C549

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou Z, Martin E, Sharina I, Esposito I, Szabo C, Bucci M et al (2016) Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol Res 111:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C et al (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30(10):1998–2004

    Article  CAS  PubMed  Google Scholar 

  66. Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P (2014) Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64(6):1344–1351

    Article  CAS  PubMed  Google Scholar 

  67. Bibli S-I, Andreadou I, Chatzianastasiou A, Tzimas C, Sanoudou D, Kranias E et al (2015) Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway. Cardiovasc Res 106(3):432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by cyclic guanosine 3′, 5′-cyclic monophosphate–dependent protein kinase. Circulation 108(18):2172–2183

    Article  PubMed  Google Scholar 

  69. Gödecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UKM et al (2001) Inotropic response to β-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532(1):195–204

    Article  PubMed  PubMed Central  Google Scholar 

  70. Paulus WJ, Vantrimpont PJ, Shah AM (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92(8):2119–2126

    Article  CAS  PubMed  Google Scholar 

  71. Kumar G, Dey SK, Kundu S (2020) Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 118377

    Google Scholar 

  72. Liu X, El-Mahdy MA, Boslett J, Varadharaj S, Hemann C, Abdelghany TM et al (2017) Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nat Commun 8(1):1–14

    Google Scholar 

  73. Gotoh J, Kuang T-Y, Nakao Y, Cohen DM, Melzer P, Itoh Y et al (2001) Regional differences in mechanisms of cerebral circulatory response to neuronal activation. Am J Physiol-Hear Circ Physiol 280(2):H821–H829

    Article  CAS  Google Scholar 

  74. Kurihara N, Alfie ME, Sigmon DH, Rhaleb N-E, Shesely EG, Carretero OA (1998) Role of nNOS in blood pressure regulation in eNOS null mutant mice. Hypertension 32(5):856–861

    Article  CAS  PubMed  Google Scholar 

  75. Santizo R, Baughman VL, Pelligrino DA (2000) Relative contributions from neuronal and endothelial nitric oxide synthases to regional cerebral blood flow changes during forebrain ischemia in rats. NeuroReport 11(7):1549–1553

    Article  CAS  PubMed  Google Scholar 

  76. Toda N, Okamura T (2011) Modulation of renal blood flow and vascular tone by neuronal nitric oxide synthase-derived nitric oxide. J Vasc Res 48(1):1–10

    Article  CAS  PubMed  Google Scholar 

  77. Huang A, Sun D, Shesely EG, Levee EM, Koller A, Kaley G (2002) Neuronal NOS-dependent dilation to flow in coronary arteries of male eNOS-KO mice. Am J Physiol-Hear Circ Physiol 282(2):H429–H436

    Article  CAS  Google Scholar 

  78. Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J et al (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119(20):2656–2662

    Article  CAS  PubMed  Google Scholar 

  79. Seddon MD, Chowienczyk PJ, Brett SE, Casadei B, Shah AM (2008) Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation 117(15):1991

    Google Scholar 

  80. Shabeeh H, Khan S, Jiang B, Brett S, Melikian N, Casadei B et al (2017) Blood pressure in healthy humans is regulated by neuronal NO synthase. Hypertension 69(5):970–976

    Article  CAS  PubMed  Google Scholar 

  81. Thomas GD, Sander M, Lau KS, Huang PL, Stull JT, Victor RG (1998) Impaired metabolic modulation of α-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci 95(25):15090–15095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thomas GD, Shaul PW, Yuhanna IS, Froehner SC, Adams ME (2003) Vasomodulation by skeletal muscle–derived nitric oxide requires α-syntrophin–mediated sarcolemmal localization of neuronal nitric oxide synthase. Circ Res 92(5):554–560

    Article  CAS  PubMed  Google Scholar 

  83. Soltis EE, Cassis LA (1991) Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness. Clin Exp Hypertens Part A: Theory Pract 13(2):277–296

    CAS  Google Scholar 

  84. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M et al (2009) Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119(12):1661

    Google Scholar 

  85. Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C et al (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27(11):2174–2185

    Article  CAS  PubMed  Google Scholar 

  86. Schleifenbaum J, Köhn C, Voblova N, Dubrovska G, Zavarirskaya O, Gloe T et al (2010) Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J Hypertens 28(9):1875–1882

    Article  CAS  PubMed  Google Scholar 

  87. Gil-Ortega M, Stucchi P, Guzmán-Ruiz R, Cano V, Arribas S, González MC et al (2010) Adaptative nitric oxide overproduction in perivascular adipose tissue during early diet-induced obesity. Endocrinology 151(7):3299–3306

    Article  CAS  PubMed  Google Scholar 

  88. Lee Y-C, Chang H-H, Chiang C-L, Liu C-H, Yeh J-I, Chen M-F et al (2011) Role of perivascular adipose tissue–derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation 124(10):1160–1171

    Article  PubMed  Google Scholar 

  89. Lee RMKW, Lu C, Su L-Y, Gao Y-J (2009) Endothelium-dependent relaxation factor released by perivascular adipose tissue. J Hypertens 27(4):782–790

    Article  CAS  PubMed  Google Scholar 

  90. Gao YJ, Lu C, Su LY, Sharma AM, Lee R (2007) Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol 151(3):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Victorio JA, Fontes MT, Rossoni LV, Davel AP (2016) Different anti-contractile function and nitric oxide production of thoracic and abdominal perivascular adipose tissues. Front Physiol 7:295

    Google Scholar 

  92. Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P et al (2013) Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 127(22):2209–2221

    Article  CAS  PubMed  Google Scholar 

  93. Weston AH, Egner I, Dong Y, Porter EL, Heagerty AM, Edwards G (2013) Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: involvement of myocyte BKCa channels and adiponectin. Br J Pharmacol 169(7):1500–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xi W, Satoh H, Kase H, Suzuki K, Hattori Y (2005) Stimulated HSP90 binding to eNOS and activation of the PI3–Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin. Biochem Biophys Res Commun 332(1):200–205

    Article  CAS  PubMed  Google Scholar 

  95. Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA et al (2014) Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci Signal 7(317):ra27-ra

    Google Scholar 

  96. Balligand J-L, Kelly RA, Marsden PA, Smith TW, Michel T (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci 90(1):347–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herring N, Golding S, Paterson DJ (2000) Pre-synaptic NO-cGMP pathway modulates vagal control of heart rate in isolated adult guinea pig atria. J Mol Cell Cardiol 32(10):1795–1804

    Article  CAS  PubMed  Google Scholar 

  98. Schwarz P, Diem R, Dun NJ, Förstermann U (1995) Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 77(4):841–848

    Article  CAS  PubMed  Google Scholar 

  99. Florea VG, Cohn JN (2014) The autonomic nervous system and heart failure. Circ Res 114(11):1815–1826

    Article  CAS  PubMed  Google Scholar 

  100. Packer M (1988) Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77(4):721–730

    Article  CAS  PubMed  Google Scholar 

  101. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109(23_suppl_1):III-27

    Google Scholar 

  102. Förstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120(4):713–735

    Article  PubMed  Google Scholar 

  103. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA (1993) Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 87(5):1468–1474

    Article  CAS  PubMed  Google Scholar 

  104. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323(1):22–27

    Article  CAS  PubMed  Google Scholar 

  105. Paolocci N, Biondi R, Bettini M, Lee C-I, Berlowitz CO, Rossi R et al (2001) Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J Mol Cell Cardiol 33(4):671–679

    Article  CAS  PubMed  Google Scholar 

  106. Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC (2017) Endothelial dysfunction and vascular disease–a 30th anniversary update. Acta Physiol 219(1):22–96

    Article  CAS  Google Scholar 

  107. Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 24(3):445–450

    Article  CAS  PubMed  Google Scholar 

  108. Antoniades C, Shirodaria C, Leeson P, Crabtree M, Pillai R, Ratnatunga C et al (2007) Altered plasma vs. vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function and inflammation. Am Heart Assoc

    Google Scholar 

  109. Li H, Witte K, August M, Brausch I, Gödtel-Armbrust U, Habermeier A et al (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol 47(12):2536–2544

    Article  CAS  PubMed  Google Scholar 

  110. Charles S, Raj V, Arokiaraj J, Mala K (2017) Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a potential target against endothelial dysfunction. Pharmacol Res 119:1–11

    Article  CAS  PubMed  Google Scholar 

  111. Zhang Q-j, Wang Z, Chen H-z, Zhou S, Zheng W, Liu G et al (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80(2):191–199

    Google Scholar 

  112. Aji W, Ravalli S, Szabolcs M, Jiang X-c, Sciacca RR, Michler RE, et al (1997) L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. Circulation 95(2):430–437

    Google Scholar 

  113. Neunteufl T, Kostner K, Katzenschlager R, Zehetgruber M, Maurer G, Weidinger F (1998) Additional benefit of vitamin E supplementation to simvastatin therapy on vasoreactivity of the brachial artery of hypercholesterolemic men. J Am Coll Cardiol 32(3):711–716

    Article  CAS  PubMed  Google Scholar 

  114. Levine GN, Frei B, Koulouris SN, Gerhard MD, Keaney JF Jr, Vita JA (1996) Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 93(6):1107–1113

    Article  CAS  PubMed  Google Scholar 

  115. Motoyama T, Kawano H, Kugiyama K, Hirashima O, Ohgushi M, Yoshimura M et al (1997) Endothelium-dependent vasodilation in the brachial artery is impaired in smokers: effect of vitamin C. Am J Physiol-Hear Circ Physiol 273(4):H1644–H1650

    Article  CAS  Google Scholar 

  116. Celık T, Balta S, Karaman M, Ahmet Ay S, Demırkol S, Ozturk C et al (2015) Endocan, a novel marker of endothelial dysfunction in patients with essential hypertension: comparative effects of amlodipine and valsartan. Blood Press 24(1):55–60

    Article  PubMed  Google Scholar 

  117. Kelly AS, Gonzalez-Campoy JM, Rudser KD, Katz H, Metzig AM, Thalin M et al (2012) Carvedilol-Lisinopril combination therapy and endothelial function in obese individuals with hypertension. J Clin Hypertens 14(2):85–91

    Article  CAS  Google Scholar 

  118. Yasu T, Kobayashi M, Mutoh A, Yamakawa K, Momomura S-i, Ueda S (2013) Dihydropyridine calcium channel blockers inhibit non-esterified-fatty-acid-induced endothelial and rheological dysfunction. Clin Sci 125(5):247–255

    Google Scholar 

  119. Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM (2015) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31(5):631–641

    Article  PubMed  Google Scholar 

  120. Tzemos N, Lim PO, MacDonald TM (2001) Nebivolol reverses endothelial dysfunction in essential hypertension: a randomized, double-blind, crossover study. Circulation 104(5):511–514

    Article  CAS  PubMed  Google Scholar 

  121. Vyssoulis GP, Marinakis AG, Aznaouridis KA, Karpanou EA, Arapogianni AN, Cokkinos DV et al (2004) The impact of third-generation beta-blocker antihypertensive treatment on endothelial function and the prothrombotic state: effects of smoking. Am J Hypertens 17(7):582–589

    Article  CAS  PubMed  Google Scholar 

  122. Xue H-M, He G-W, Huang J-H, Yang Q (2010) New strategy of endothelial protection in cardiac surgery: use of enhancer of endothelial nitric oxide synthase. World J Surg 34(7):1461–1469

    Article  PubMed  Google Scholar 

  123. Burger DE, Lu X, Lei M, Xiang F-L, Hammoud L, Jiang M et al (2009) Clinical Perspective. Circulation 120(14):1345–1354

    Article  CAS  PubMed  Google Scholar 

  124. Dawson D, Lygate C, Zhang MH, Hulbert K, Neubauer S, Casadei B (2005) nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction

    Google Scholar 

  125. Saraiva RM, Minhas KM, Raju SVY, Barouch LA, Pitz E, Schuleri KH et al (2005) Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 112(22):3415–3422

    Article  CAS  PubMed  Google Scholar 

  126. Yasmin W, Strynadka KD, Schulz R (1997) Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33(2):422–432

    Article  CAS  PubMed  Google Scholar 

  127. Brunner F, Maier R, Andrew P, Wölkart G, Zechner R, Mayer B (2003) Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57(1):55–62

    Article  CAS  PubMed  Google Scholar 

  128. Burkard N, Williams T, Czolbe M, Blömer N, Panther F, Link M et al (2010) Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion. Circulation 122(16):1588–1603

    Article  CAS  PubMed  Google Scholar 

  129. Elrod JW, Greer JJM, Bryan NS, Langston W, Szot JF, Gebregzlabher H et al (2006) Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26(7):1517–1523

    Article  CAS  PubMed  Google Scholar 

  130. Janssens S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M et al (2004) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 94(9):1256–1262

    Article  CAS  PubMed  Google Scholar 

  131. Szelid Z, Pokreisz P, Liu X, Vermeersch P, Marsboom G, Gillijns H et al (2010) Cardioselective nitric oxide synthase 3 gene transfer protects against myocardial reperfusion injury. Basic Res Cardiol 105(2):169–179

    Article  CAS  PubMed  Google Scholar 

  132. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Am Heart Assoc

    Google Scholar 

  133. Korge P, Ping P, Weiss JN (2008) Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circ Res 103(8):873–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vanhoutte PM, Shimokawa H, Tang EHC, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196(2):193–222

    Article  CAS  Google Scholar 

  135. Perticone F, Sciacqua A, Maio R, Perticone M, Maas R, Boger RH et al (2005) Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 46(3):518–523

    Article  CAS  PubMed  Google Scholar 

  136. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15(8):1983–1992

    Article  CAS  PubMed  Google Scholar 

  137. Papageorgiou N, Androulakis E, Papaioannou S, Antoniades C, Tousoulis D (2015) Homoarginine in the shadow of asymmetric dimethylarginine: from nitric oxide to cardiovascular disease. Amino Acids 47(9):1741–1750

    Article  CAS  PubMed  Google Scholar 

  138. Siervo M, Corander M, Stranges S, Bluck L (2011) Post-challenge hyperglycaemia, nitric oxide production and endothelial dysfunction: the putative role of asymmetric dimethylarginine (ADMA). Nutr Metab Cardiovasc Dis 21(1):1–10

    Article  CAS  PubMed  Google Scholar 

  139. Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M (2008) Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol-Lung Cell Mol Physiology 294(1):L98–L109

    Article  CAS  Google Scholar 

  140. Fresquet F, Pourageaud F, Leblais V, Brandes RP, Savineau JP, Marthan R et al (2006) Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148(5):714–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Eringa EC, Stehouwer CDA, Roos MH, Westerhof N, Sipkema P (2007) Selective resistance to vasoactive effects of insulin in muscle resistance arteries of obese Zucker (fa/fa) rats. Am J Physiol-Endocrinol Metabism 293(5):E1134–E1139

    Article  CAS  Google Scholar 

  142. Goel A, Zhang Y, Anderson L, Rahimian R (2007) Gender difference in rat aorta vasodilation after acute exposure to high glucose: Involvement of protein kinase C β and superoxide but not of Rho Kinase. Cardiovasc Res 76(2):351–360

    Article  CAS  PubMed  Google Scholar 

  143. Schäfer A, Fraccarollo D, Pförtsch S, Flierl U, Vogt C, Pfrang J et al (2008) Improvement of vascular function by acute and chronic treatment with the PDE-5 inhibitor sildenafil in experimental diabetes mellitus. Br J Pharmacol 153(5):886–893

    Article  PubMed  Google Scholar 

  144. Cai S, Khoo J, Channon KM (2005) Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovasc Res 65(4):823–831

    Article  CAS  PubMed  Google Scholar 

  145. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M et al (2008) Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res 102(1):95–102

    Article  CAS  PubMed  Google Scholar 

  146. Vanhoutte PM (2008) Arginine and arginase: endothelial NO synthase double crossed?. Am Heart Assoc

    Google Scholar 

  147. Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M et al (2002) Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 106(8):987–992

    Article  CAS  PubMed  Google Scholar 

  148. Xiong Y, Fu Y-f, Fu S-h, Zhou H-h (2003) Elevated levels of the serum endogenous inhibitor of nitric oxide synthase and metabolic control in rats with streptozotocin-induced diabetes. J Cardiovasc Pharmacol 42(2):191–196

    Google Scholar 

  149. Gao X, Zhang H, Schmidt AM, Zhang C (2008) AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol-Hear Circ Physiology 295(2):H491–H498

    Article  CAS  Google Scholar 

  150. Luscher TF, Steffel J (2008) Sweet and sour: unraveling diabetic vascular disease. Am Heart Assoc

    Google Scholar 

  151. Lesniewski LA, Donato AJ, Behnke BJ, Woodman CR, Laughlin MH, Ray CA et al (2008) Decreased NO signaling leads to enhanced vasoconstrictor responsiveness in skeletal muscle arterioles of the ZDF rat prior to overt diabetes and hypertension. Am J Physiol-Hear Circ Physiol 294(4):H1840–H1850

    Article  CAS  Google Scholar 

  152. Lu T, Wang X-L, He T, Zhou W, Kaduce TL, Katusic ZS et al (2005) Impaired Arachidonic Acid-Mediated Activation of Large-Conductance Ca2+-Activated K+ Channels in Coronary Arterial Smooth Muscle Cells in Zucker Diabetic Fatty Rats. Diabetes 54(7):2155–2163

    Article  CAS  PubMed  Google Scholar 

  153. Lam CSP, Brutsaert DL (2012) Endothelial dysfunction: a pathophysiologic factor in heart failure with preserved ejection fraction. J Am Coll Cardiol

    Google Scholar 

  154. Rossi R, Nuzzo A, Origliani G, Modena MG (2008) Prognostic role of flow-mediated dilation and cardiac risk factors in post-menopausal women. J Am Coll Cardiol 51(10):997–1002

    Article  PubMed  Google Scholar 

  155. Witman MAH, Fjeldstad AS, McDaniel J, Ives SJ, Zhao J, Barrett-O’Keefe Z et al (2012) Vascular function and the role of oxidative stress in heart failure, heart transplant, and beyond. Hypertension 60(3):659–668

    Article  CAS  PubMed  Google Scholar 

  156. Gill RM, Braz JC, Jin N, Etgen GJ, Shen W (2007) Restoration of impaired endothelium-dependent coronary vasodilation in failing heart: role of eNOS phosphorylation and CGMP/cGK-I signaling. Am J Physiol-Hear Circ Physiol 292(6):H2782–H2790

    Article  CAS  Google Scholar 

  157. Meyer B, Mörtl D, Strecker K, Hülsmann M, Kulemann V, Neunteufl T et al (2005) Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol 46(6):1011–1018

    Article  PubMed  Google Scholar 

  158. Siman FDM, Silveira EA, Fernandes AA, Stefanon I, Vassallo DV, Padilha AS (2015) Ouabain induces nitric oxide release by a PI3K/Akt-dependent pathway in isolated aortic rings from rats with heart failure. J Cardiovasc Pharmacol 65(1):28–38

    Article  CAS  PubMed  Google Scholar 

  159. Ijzerman RG, De Jongh RT, Beijk MAM, Van Weissenbruch MM, Delemarre‐van De Waal HA, Serne EH et al (2003) Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur J Clin Investig 33(7):536–42

    Google Scholar 

  160. Ganz P, Hsue PY (2013) Endothelial dysfunction in coronary heart disease is more than a systemic process. Oxford University Press

    Google Scholar 

  161. Hodgson JM, Marshall JJ (1989) Direct vasoconstriction and endothelium-dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation 79(5):1043–1051

    Google Scholar 

  162. Lavi S, Yang EH, Prasad A, Mathew V, Barsness GW, Rihal CS et al (2008) The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans. Hypertension 51(1):127–133

    Article  CAS  PubMed  Google Scholar 

  163. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW et al (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315(17):1046–1051

    Article  CAS  PubMed  Google Scholar 

  164. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U (2012) High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries: the ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries. J Am Coll Cardiol 59(7):655–662

    Article  CAS  PubMed  Google Scholar 

  165. Ong P, Athanasiadis A, Borgulya G, Vokshi I, Bastiaenen R, Kubik S et al (2014) Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 129(17):1723–1730

    Article  CAS  PubMed  Google Scholar 

  166. Luk T-H, Dai Y-L, Siu C-W, Yiu K-H, Li S-W, Fong B et al (2012) Association of lower habitual physical activity level with mitochondrial and endothelial dysfunction in patients with stable coronary artery disease. Circ J 76(11):2572–2578

    Article  PubMed  Google Scholar 

  167. Antoniades C, Demosthenous M, Tousoulis D, Antonopoulos AS, Vlachopoulos C, Toutouza M et al (2011) Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis. Hypertension 58(1):93–98

    Article  CAS  PubMed  Google Scholar 

  168. Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA et al (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658

    Article  PubMed  Google Scholar 

  169. Kuvin JT, Karas RH (2003) Clinical utility of endothelial function testing: ready for prime time? Circulation 107(25):3243–3247

    Article  PubMed  Google Scholar 

  170. Mancini GBJ (2004) Vascular structure versus function: is endothelial dysfunction of independent prognostic importance or not? J Am Coll Cardiol

    Google Scholar 

  171. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101(9):948–954

    Article  CAS  PubMed  Google Scholar 

  172. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  173. Mooradian DL, Hutsell TC, Keefer LK (1995) Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 25(4):674–678

    Article  CAS  PubMed  Google Scholar 

  174. Bath PMW (1993) The effect of nitric oxide-donating vasodilators on monocyte chemotaxis and intracellular cGMP concentrations in vitro. Eur J Clin Pharmacol 45(1):53–58

    Article  CAS  PubMed  Google Scholar 

  175. Lefer AM, Ma XL (1993) Decreased basal nitric oxide release in hypercholesterolemia increases neutrophil adherence to rabbit coronary artery endothelium. Arteriosclerosis and thrombosis: a journal of vascular biology 13(6):771–776

    Article  CAS  PubMed  Google Scholar 

  176. Ko F-N, Wu C-C, Kuo S-C, Lee F-Y, Teng C-M (1994) YC-1, a novel activator of platelet guanylate cyclase

    Google Scholar 

  177. Stasch JP, Schmidt P, Alonso-Alija C, Apeler H, Dembowsky K, Haerter M et al (2002) NO-and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 136(5):773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gheorghiade M, Greene SJ, Filippatos G, Erdmann E, Ferrari R, Levy PD et al (2012) Cinaciguat, a soluble guanylate cyclase activator: results from the randomized, controlled, phase IIb COMPOSE programme in acute heart failure syndromes. Eur J Heart Fail 14(9):1056–1066

    Article  CAS  PubMed  Google Scholar 

  179. Ghofrani H-A, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH et al (2013) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369(4):319–329

    Article  CAS  PubMed  Google Scholar 

  180. Heitzer T, Krohn K, Albers S, Meinertz T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia 43(11):1435–1438

    Article  CAS  PubMed  Google Scholar 

  181. Porkert M, Sher S, Reddy U, Cheema F, Niessner C, Kolm P et al (2008) Tetrahydrobiopterin: a novel antihypertensive therapy. J Hum Hypertens 22(6):401–407

    Article  CAS  PubMed  Google Scholar 

  182. Cunnington C, Van Assche T, Shirodaria C, Kylintireas I, Lindsay AC, Lee JM et al (2012) Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation 125(11):1356–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gao L, Chalupsky K, Stefani E, Cai H (2009) Mechanistic insights into folic acid-dependent vascular protection: dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity. J Mol Cell Cardiol 47(6):752–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Crabtree MJ, Channon KM (2011) Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 25(2):81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T (2001) Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radical Biol Med 30(12):1390–1399

    Article  CAS  Google Scholar 

  186. Doshi SN, McDowell IFW, Moat SJ, Payne N, Durrant HJ, Lewis MJ et al (2002) Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 105(1):22–26

    Article  CAS  PubMed  Google Scholar 

  187. Shirodaria C, Antoniades C, Lee J, Jackson CE, Robson MD, Francis JM et al (2007) Clin Perspect. Circulation 115(17):2262–2270

    Article  CAS  PubMed  Google Scholar 

  188. Tucker KL, Mahnken B, Wilson PWF, Jacques P, Selhub J (1996) Folic acid fortification of the food supply: potential benefits and risks for the elderly population. JAMA 276(23):1879–1885

    Article  CAS  PubMed  Google Scholar 

  189. Pufahl RA, Wishnok JS, Marletta MA (1995) Hydrogen peroxide-supported oxidation of NG-hydroxy-L-arginine by nitric oxide synthase. Biochemistry 34(6):1930–1941

    Article  CAS  PubMed  Google Scholar 

  190. Katori T, Donzelli S, Tocchetti CG, Miranda KM, Cormaci G, Thomas DD et al (2006) Peroxynitrite and myocardial contractility: in vivo versus in vitro effects. Free Radical Biol Med 41(10):1606–1618

    Article  CAS  Google Scholar 

  191. Paolocci N, Katori T, Champion HC, John MES, Miranda KM, Fukuto JM et al (2003) Positive inotropic and lusitropic effects of HNO/NO− in failing hearts: independence from β-adrenergic signaling. Proc Natl Acad Sci 100(9):5537–5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Woodward JJ, NejatyJahromy Y, Britt RD, Marletta MA (2010) Pterin-centered radical as a mechanistic probe of the second step of nitric oxide synthase. J Am Chem Soc 132(14):5105–5113

    Article  CAS  PubMed  Google Scholar 

  193. Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM et al (2007) Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling. Circ Res 100(1):96–104

    Article  CAS  PubMed  Google Scholar 

  194. Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T et al (2015) Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 65(2):385–392

    Article  CAS  PubMed  Google Scholar 

  195. Liu VWT, Huang PL (2008) Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res 77(1):19–29

    CAS  PubMed  Google Scholar 

  196. Simon MA, Vanderpool RR, Nouraie M, Bachman TN, White PM, Sugahara M et al (2016) Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction. JCI insight 1(18)

    Google Scholar 

  197. Montenegro MF, Sundqvist ML, Larsen FJ, Zhuge Z, Carlström M, Weitzberg E et al (2017) Blood pressure–lowering effect of orally ingested nitrite is abolished by a proton pump inhibitor. Hypertension 69(1):23–31

    Article  CAS  PubMed  Google Scholar 

  198. Hughan KS, Wendell SG, Delmastro-Greenwood M, Helbling N, Corey C, Bellavia L et al (2017) Conjugated linoleic acid modulates clinical responses to oral nitrite and nitrate. Hypertension 70(3):634–644

    Article  CAS  PubMed  Google Scholar 

  199. Galiè N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z et al (2009) Tadalafil therapy for pulmonary arterial hypertension. Circulation 119(22):2894

    Google Scholar 

  200. Galiè N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D et al (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353(20):2148–2157

    Article  PubMed  Google Scholar 

  201. Ahmad N, Wang Y, Ali AK, Ashraf M (2009) Long-acting phosphodiesterase-5 inhibitor, tadalafil, induces sustained cardioprotection against lethal ischemic injury. Am J Physiol-Hear Circ Physiol 297(1):H387–H391

    Article  CAS  Google Scholar 

  202. Andersen MJ, Ersbøll M, Axelsson A, Gustafsson F, Hassager C, Køber L et al (2013) Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction: the Sildenafil and Diastolic Dysfunction After Acute Myocardial Infarction (SIDAMI) trial. Circulation 127(11):1200–1208

    Article  CAS  PubMed  Google Scholar 

  203. Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA et al (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase G–dependent generation of hydrogen sulfide. Circulation 120(11_suppl_1):S31–S6

    Google Scholar 

  204. Kumar G, Dey SK, Kundu S (2021) Herbs and their bioactive ingredients in cardio-protection: underlying molecular mechanisms and evidences from clinical studies. Phytomedicine 153753

    Google Scholar 

Download references

Acknowledgements

All authors of this chapter are grateful to the Department of Biochemistry, University of Delhi, South Campus, New Delhi, India, for supporting this study. The authors are thankful to Pixabay for supporting the artwork of Figure 3.3. SK acknowledges the Department of Biochemistry (DBT), Government of India, for the financial assistance (vide Grant IDs: BT/PR13531/MED/30/1523/2015, BT/PR8391/BRB/10/1231/2013 and BT/01/COE/07/UDSC/2008). SK is thankful to the University of Delhi (R&D; Institution of Eminence) and University Grants Commission (UGC-SAP) for financial support. SK also acknowledges Department of Science and Technology (DST-PURSE) and Defense Research and Development Organization (DRDO), Government of India for providing the necessary funding. Council of Scientific and Industrial Research (CSIR) is acknowledged by GK for providing research fellowship. SKD acknowledges Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, India for various help to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kundu .

Editor information

Editors and Affiliations

Ethics declarations

Declared none.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, G., Dey, S.K., Kundu, S. (2023). Nitric Oxide and Cardiovascular Diseases: Cardioprotection, Complications and Therapeutics. In: Ray, A., Gulati, K. (eds) Nitric Oxide: From Research to Therapeutics. Advances in Biochemistry in Health and Disease, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-031-24778-1_3

Download citation

Publish with us

Policies and ethics