Skip to main content
Log in

Numerical approximation for a variable-order nonlinear reaction–subdiffusion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Fractional reaction–subdiffusion equations are widely used in recent years to simulate physical phenomena. In this paper, we consider a variable-order nonlinear reaction–subdiffusion equation. A numerical approximation method is proposed to solve the equation. Its convergence and stability are analyzed by Fourier analysis. By means of the technique for improving temporal accuracy, we also propose an improved numerical approximation. Finally, the effectiveness of the theoretical results is demonstrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a boundary domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MATH  Google Scholar 

  2. Baeumer, B., Koávcs, M., Meerschaert, M.: Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55, 2212–2226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.-M., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction–subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729–5742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiu, J.W., Chiam, K.-H.: Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction–subdiffusion systems. Phys. Rev. E 78, 056708 (2008)

    Article  Google Scholar 

  8. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, K.P., Jacob, N.: Feller semigroups obtained by variable-order subordination. Rev. Mat. Complut. 20(2), 293–307 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Maainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, New York (1997)

    Google Scholar 

  11. Jacob, N., Leopold, H.: Pseudo differential operators with variable order of differentiation generating Feller semigroup. Integr. Equ. Oper. Theory 17, 544–553 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kikuchi, K., Negoro, A.: On Markov processes generated by pseudodifferentail operator of variable order. Osaka J. Math. 34, 319–335 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comp. Physiol. 205, 719–736 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Leopold, H.G.: Embedding of function spaces of variable order of differentiation. Czechoslov. Math. J. 49, 633–644 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, Y., Xu, C.: Finite difference/spectral approximation for the time-fractional diffusion equation. J. Comp. Physiol. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Liu, F., Zhang, P., Anh, V., Burrage, K.: Stability and convergence of the difference methods for the space-time feactional advection–diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Levy–Feller advection–dispersion process by random walk and finite difference method. J. Comp. Physiol. 222, 57–70 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Lorenzo, C.F., Hartley, T.T.: Initialization, conceptualization and application in the generalized fractional calculus. NASA/TP-1998-208-208415 (1998)

  21. Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  26. Ramirez, L.E.S., Coimbra, C.F.M.: Variable order constitutive relation for viscoelasticity. Ann. Phys. 16, 543–552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, Article ID 846107 (2010). doi:10.1155/2010/846107

  28. Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Fractional generalized random fields of variable order. Stoch. Anal. Appl. 22, 775–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sagués, F., Shkilev, V.P., Sokolov, I.M.: Reaction-subdiffusion equations for the A\(\rightleftharpoons\)B reaction. Phys. Rev. E 77, 032102 (2008)

    Article  Google Scholar 

  30. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Transf. Spec. F. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schmidt-Martens, H.H., Froemberg, D., Sokolov, I.M.: Front propagation in a one-dimensional autocatalytic reaction–subdiffusion system. Phys. Rev. E 79, 041135 (2009)

    Article  Google Scholar 

  32. Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation. IMA J. Appl. Math. 73, 850–872 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sokolov, I.M., Schmidt, M.G.W., Sagués, F.: Reaction–subdiffusion equations. Phys. Rev. E 73, 031102 (2006)

    Article  Google Scholar 

  34. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Differece Methods. Oxford Press, Toronto (1985)

    Google Scholar 

  35. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: Variable viscoelasticity operator. Ann. Phys. 14, 378–389 (2005)

    Article  MATH  Google Scholar 

  36. Taddjeran, C., Meerschaert, M., Scheffler, H.: A second-order accuate numerical approximation for the fractional diffusion equation. J. Comp. Physiol. 213, 205–213 (2006)

    Google Scholar 

  37. Yadav, A., Horsthemke, W.: Kinetic equations for reaction–subdiffusion systems: Derivation and stability analysis. Phys. Rev. E 74, 066118 (2006)

    Article  MathSciNet  Google Scholar 

  38. Yadav, A., Milu, S.M., Horsthemke, W.: Turing instability in reaction–subdiffusion systems. Phys. Rev. E 78, 026116 (2008)

    Article  MathSciNet  Google Scholar 

  39. Yu, Q., Liu, F., Anh, V., Turner, I.: Solving linear and non-linear space-time fractional reaction–diffusion equations by the Adomian decomposition method. Int. J. Numer. Methods Eng. 74, 138–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A+B →C reaction–subdiffusion process. Phys. Rev. E 69, 036126 (2004)

    Article  Google Scholar 

  41. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comp. Physiol. 216, 264–274 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, H., Liu, F., Anh, V.: Numerical approximation of Lévy–Feller diffusion equation and its probability interpretation. J. Comput. Appl. Math. 206, 1098–1115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CM., Liu, F., Turner, I. et al. Numerical approximation for a variable-order nonlinear reaction–subdiffusion equation. Numer Algor 63, 265–290 (2013). https://doi.org/10.1007/s11075-012-9622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9622-6

Keywords

Mathematics Subject Classifications (2010)

Navigation