Skip to main content
Log in

Aggregation of manufactured nanoparticles in aqueous solutions of mono- and bivalent electrolytes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The study of biological activity of manufactured nanopowders lacks experimental data concerning the influence of electrolyte nature and content on the degree of nanoparticles aggregation in aqueous suspensions. Using the dynamic light scattering technique, it has been shown how the ionic strength (0.0001…100 mM) of mono- and bivalent electrolyte (Na+, Ca2+) solutions influences the size and zeta-potential of Al (90 nm) and Al2O3 (30 nm) nanoparticles. It has been determined that the aggregative effect of counterions decreases when their charge increases. The weaker influence of Ca2+ concentration on the aggregation of both nanoparticles has been demonstrated. For Al2O3 nanoparticles, the stronger influence of Na+ concentration on the size and charge of aggregates has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abercade consulting. Information on the web-site: http://abercade.ru/research/analysis/67.html. Accessed 23 Oct 2014

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med Oxf 56:300–306

    Article  Google Scholar 

  • Akaighe N, Depner SW, Banerjee S, Sohn M (2013) Transport and deposition of Suwannee river humic acid/natural organic matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength. Chemosphere 92:406–412

    Article  Google Scholar 

  • Birdi KS (2008) Handbook of surface and colloid chemistry. CRC Press, Boca Raton

    Book  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083–1090

    Article  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  Google Scholar 

  • Domingos R, Simon D, Hauser C, Wilkinson KJ (2011) Bioaccumulation and Effects of CdTe/CdS quantum dots on chlamydomonas reinhardtii—nanoparticles or the free ions? Environ Sci Technol 45:7664–7669

    Article  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303

    Article  Google Scholar 

  • Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Article  Google Scholar 

  • Guzman KAD, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: national nanotechnology initiative funding. Environ Sci Technol 40:1401–1407

    Article  Google Scholar 

  • Jiang X, Tong M, Lu R, Kim H (2012) Transport and deposition of ZnO nanoparticles in saturated porous media. Colloid Surf A 401:29–37

    Article  Google Scholar 

  • Karepina EE, Godymchuk AY, Kuznetsov DV, Gusev AA (2014) High physicochemical persistence of aluminum nanoparticles in synthetic body fluids. Adv Mater Res 872:248–256

    Article  Google Scholar 

  • Li M, Czymmek KJ, Huanga CP (2011) Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. J Hazard Mater 187:502–508

    Article  Google Scholar 

  • Liu Q, Maroto-Valer MM (2010) Investigation of the pH effect of a typical host rock and buffer solution on CO2 sequestration in synthetic brines. Fuel Process Technol 91:1321–1329

    Article  Google Scholar 

  • Marques MRC, Loebenberg R, Almukainzi M (2011) Simulated biological fluids with possible application in dissolution testing. Dissolut Technol 118:15–28

    Article  Google Scholar 

  • Murdock C, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253

    Article  Google Scholar 

  • Pakrashi S, Dalai S, Prathna TC, Trivedi S, Myneni R, Raichur AM (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol 132:34–45

    Article  Google Scholar 

  • Rahman T (2013) Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration. Sci Total Environ 463–464:565–571

    Article  Google Scholar 

  • Römer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR (2011) Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J Chromatogr A 1218:4226–4233

    Article  Google Scholar 

  • Sadiq I, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299

    Article  Google Scholar 

  • Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159:970–976

    Article  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  Google Scholar 

  • Wang D, Paradelo M, Bradfordc SA, Peijnenburg WJGM, Chua L, Zhou D (2011) Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: effects of solution ionic strength and composition. Water Res 45:5905–5915

    Article  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  Google Scholar 

  • Zhu X, Zhu L, Chen Y, Tian S (2009) Acute toxicities of six manufactured nanomaterials suspensions to Daphnia magna. J Nanopart Res 11:67–75

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Science and Education of the Russian Federation, Russian Fund for Basic Research (project # 15-03-06528_a) and in the framework of Increase Competitiveness Program of NUST « MISiS ».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Godymchuk.

Additional information

Guest Editor: Liudmyla Rieznichenko

This article is part of the topical collection on Engineered Bioinspired Nanomaterials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godymchuk, A., Karepina, E., Yunda, E. et al. Aggregation of manufactured nanoparticles in aqueous solutions of mono- and bivalent electrolytes. J Nanopart Res 17, 211 (2015). https://doi.org/10.1007/s11051-015-3012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3012-7

Keywords

Navigation