Skip to main content
Log in

Radiolabelling of TiO2 nanoparticles for radiotracer studies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Industrially manufactured titanium dioxide nanoparticles have been successfully radiolabelled with 48V by irradiation with a cyclotron-generated proton beam. Centrifugation tests showed that the 48V radiolabels were stably bound within the nanoparticle structure in an aqueous medium, while X-ray diffraction indicated that no major structural modifications to the nanoparticles resulted from the proton irradiation. In vitro tests of the uptake of cold and radiolabelled nanoparticles using the human cell line Calu-3 showed no significant difference in the uptake between both batches of nanoparticles. The uptake was quantified by Inductively Coupled Plasma Mass Spectrometry and high resolution γ-ray spectrometry for cold and radiolabelled nanoparticles, respectively. These preliminary results indicate that alterations to the nanoparticles’ properties introduced by proton bombardment can be controlled to a sufficient extent that their further use as radiotracers for biological investigations can be envisaged and elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and globaltrends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Anselmann R (2001) Nanoparticles and nanolayers in commercial applications. J Nanopart Res 3:329–336

    Article  CAS  Google Scholar 

  • Balbus JM, Florini K, Denison RA, Walsh SA (2007) Protecting workers and the environment: an environmental NGO’s perspective on nanotechnology. J Nanopart Res 9:11–22

    Article  Google Scholar 

  • Berger JT, Voynow JA, Peters KW, Rose MC (1999) Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am J Respir Cell Mol Biol 20:500–510

    CAS  PubMed  Google Scholar 

  • Di Giampaolo L, Di Gioacchino M, Ponti J, Sabbioni E, Castellani ML, Reale M, Toto E, Verna N, Conti P, Paganelli R, Boscolo P (2004) “In vitro” comparative immune effects of different titanium compounds. Int J Immunopathol Pharmacol 17(Suppl 2):115–122

    PubMed  Google Scholar 

  • Di Gioacchino M, Verna N, Di Giampaolo L, Di Claudio F, Turi MC, Perrone A, Petrarca C, Mariani-Costantini R, Sabbioni E, Boscolo P (2007) Immunotoxicity and sensitizing capacity of metal compounds depend on speciation. Int J Immunopathol Pharmacol 20(Suppl 2):15–22

    PubMed  Google Scholar 

  • Florence A, Hussain N (2001) Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev 50(Suppl):S69–S89

    Article  CAS  PubMed  Google Scholar 

  • Forbes B (2000) Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technol Today 3:18–27

    Article  CAS  PubMed  Google Scholar 

  • Garabant DH, Fine LJ, Oliver C, Bernstein L, Peters JM (1987) Abnormalities of pulmonary function and pleural disease among titanium metal production workers. Scand J Work Environ Health 13:47–51

    Google Scholar 

  • Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 23:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Henry TB, Scrown TM, Johnston BD, Tyler CR (2008a) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 15:396–409

    Article  CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  PubMed  Google Scholar 

  • IAEA (2008) Experimental Nuclear Reaction Data (EXFOR). http://www-nds.iaea.org/exfor/exfor.htm (continuously updated)

  • Kam N, O’Connell M, Wisdom J, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer-cell destruction. Proc Natl Acad Sci 102:11600–11605

    Article  CAS  PubMed  ADS  Google Scholar 

  • Keller KH (2007) Nanotechnology and society. J Nanopart Res 9:5–10

    Article  Google Scholar 

  • Kreyling WG, Semmler M, Möller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17:140–152

    Article  CAS  PubMed  Google Scholar 

  • Liao C-M, Chiang Y-H, Chio C-P (2009) Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace. J Hazard Mater 162:57–65

    Article  CAS  PubMed  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldsen K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  PubMed  ADS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  • OECD (2006) Report of the OECD workshop on the safety of manufactured nanomaterials: co-operation, co-ordination and communication. Organization for Economic Co-operation and Development, Paris

    Google Scholar 

  • OECD (2008) Current developments/activities on the safety of manufactures nanomaterials. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials, Paris

    Google Scholar 

  • Owen R, Depledge M (2005) Nanotechnology in the environment: risks and rewards. Mar Pollut Bull 50:609–612

    Article  CAS  PubMed  Google Scholar 

  • Pantarotto D, Briand J, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 1:16–17

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  PubMed  Google Scholar 

  • Reijnders L (2009) The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab 94:873–876

    Article  CAS  Google Scholar 

  • Roco MC (2008) The journal of nanoparticle research at 10 years. J Nanopart Res 10(Suppl 1):1–2

    Article  Google Scholar 

  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111

    Article  CAS  PubMed  Google Scholar 

  • Steimer A, Haltner E, Lehr CM (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18:137–182

    Article  CAS  PubMed  Google Scholar 

  • Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxice TiO2 nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Winton HL, Soeller C, Stewart GA, Thompson PJ, Gruenert DC, Cannell MB, Garrod DR, Robinson C (2000) Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J 15:1058–1068

    Article  CAS  PubMed  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Striolo A, Cummings P (2005) C60 binds to and deforms nucleotides. Biophys J 89:3856–3862

    Article  CAS  PubMed  Google Scholar 

  • Ziegler JF, Ziegler MD, Biersack JP (2008) SRIM—the stopping and range of ions in matter. Free download possible from http://www.srim.org/

Download references

Acknowledgements

The authors would like thank W. Horstmann and F. Arroja for their continuous support in the fabrication and improvement of the design of the irradiation capsules and G. Cotogno for his IT support. This work has been partially funded by the European Commission’s 7th Framework Programme, ‘NeuroNano’ project (contract NMP4-SL-2008-214547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Holzwarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, K., Cydzik, I., Del Torchio, R. et al. Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12, 2435–2443 (2010). https://doi.org/10.1007/s11051-009-9806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9806-8

Keywords

Navigation