Skip to main content
Log in

Thermal and burning properties of wood flour-poly(vinyl chloride) composite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study deals with the effects of wood flour on thermal and burning properties of wood flour-poly(vinyl chloride) composites (WF-PVC) using thermogravimetric (TG), cone calorimetry (CONE), and pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS). TG tests show that an interaction occurred between wood flour and PVC during the thermal degradation of WF-PVC. Wood flour decreased the temperature of onset of decomposition of PVC. However, the char formation could be increased by adding wood flour to PVC. CONE test indicates that wood flour had positive effects on heat release and smoke emission of PVC. Comparing with PVC, WF-PVC reduced average heat release rate and the peak HRR by about 14 and 28%, respectively; smoke production rate was also decreased. The degradation mechanism was studied by Py–GC/MS. The results show that the volatile pyrolysis products of WF-PVC are very different from PVC. The yields of HCl and aromatic compounds decreased dramatically, and the aliphatic compounds increased by the incorporation of WF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morton J, editor. Current and emerging applications for natural & wood fiber composites. In: Proceedings of the 7th international conference on wood fiber-plastic composites. Madison: Forest Products Society; 2003. p. 19–20.

  2. Oksman K, Lindberg H, Holmgren A. The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites. J Appl Polym Sci. 1998;69:201–9.

    Article  CAS  Google Scholar 

  3. Xiong C, Qi RR, Wang YL. Wood-thermoplastic composites from wood flour and high-density polyethylene. J Appl Polym Sci. 2009;114:1160–8.

    Article  CAS  Google Scholar 

  4. Raj RG, Kokta BV, Maldas D, Daneault C. Use of wood fibers in thermoplastics: VI. The effect of coupling agents in polyethylene wood fiber composites. J Appl Polym Sci. 1989;37:1089–103.

    Article  CAS  Google Scholar 

  5. Raj RG, Kokta BV, Daneault C. Polypropylene-wood fiber composites—effect of fiber treatment on mechanical-properties. Int J Polym Mater. 1989;12:239–50.

    Article  CAS  Google Scholar 

  6. Klason C, Kubat J, Gatenholm P. Wood fiber reinforced composites. ACS Symp Ser. 1992;489:82–98.

    Article  CAS  Google Scholar 

  7. Kazayawoko M, Balatinecz JJ, Matuana LM. Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mater Sci. 1999;34:6189–99.

    Article  CAS  Google Scholar 

  8. Maldas D, Kokta BV, Raj RG, Daneault C. Improvement of the mechanical-properties of sawdust wood fiber polystyrene composites by chemical treatment. Polymer. 1988;29:1255–65.

    Article  CAS  Google Scholar 

  9. Nair KCM, Thomas S, Groeninckx G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol. 2001;61:2519–29.

    Article  Google Scholar 

  10. Matuana LM, Woodhams RT, Balatinecz JJ, Park CB. Influence of interfacial interactions on the properties of PVC cellulosic fiber composites. Polym Compos. 1998;19:446–55.

    Article  CAS  Google Scholar 

  11. Jiang HH, Kamdem DP. Development of poly(vinyl chloride)/wood composites. A literature review. J Vinyl Addit Technol. 2004;10:59–69.

    Article  CAS  Google Scholar 

  12. Djidjelli H, Martinez-Vega JJ, Farenc J, Benachour D. Effect of wood flour content on the thermal, mechanical and dielectric properties of poly(vinyl chloride). Macromol Mater Eng. 2002;287:611–8.

    Article  CAS  Google Scholar 

  13. Jiang HH, Kamdem DP. Thermal and dynamic mechanical behavior of poly(vinyl chloride)/wood flour composites. J Appl Polym Sci. 2008;107:951–7.

    Article  CAS  Google Scholar 

  14. Lu JZ, Wu QL, Negulescu II. Surface and interfacial characterization of wood-PVC composites: thermal and dynamic mechanical properties. Wood Fiber Sci. 2004;36:500–10.

    CAS  Google Scholar 

  15. Sombatsompop N, Chaochanchaikul K, Phromchirasuk C, Thongsang S. Effect of wood sawdust content on rheological and structural changes, and thermo-mechanical properties of PVC/sawdust composites. Polym Int. 2003;52:1847–55.

    Article  CAS  Google Scholar 

  16. McGhee B, Norton F, Snape C, Hall P. The copyrolysis of poly (vinylchloride) with cellulose derived materials as a model for municipal waste derived chars. Fuel. 1995;74:28–31.

    Article  CAS  Google Scholar 

  17. Matsuzawa Y, Ayabe M, Nishino J. Acceleration of cellulose co-pyrolysis with polymer. Polym Degrad Stab. 2001;71:435–44.

    Article  Google Scholar 

  18. Matsuzawa Y, Ayabe M, Nishino J, Kubota N, Motegi M. Evaluation of char fuel ratio in municipal pyrolysis waste. Fuel. 2004;83:1675–87.

    Article  CAS  Google Scholar 

  19. Kuramochi H, Nakajima D, Goto S, Sugita K, Wu W, Kawamoto K. HCl emission during co-pyrolysis of demolition wood with a small amount of PVC film and the effect of wood constituents on HCl emission reduction. Fuel. 2008;87:3155–7.

    Article  CAS  Google Scholar 

  20. Saeed L, Tohka A, Haapala M, Zevenhoven R. Pyrolysis and combustion of PVC, PVC-wood and PVC-coal mixtures in a two-stage fluidized bed process. Fuel Process Technol. 2004;85:1565–83.

    Article  CAS  Google Scholar 

  21. Rocha N, Kazlauciunas A, Gil MH, Goncalves PM, Guthrie JT. Poly(vinyl chloride)-wood flour press mould composites: the influence of raw materials on performance properties. Compos Part A. 2009;40:653–61.

    Article  Google Scholar 

  22. Zhao YS, Wang KJ, Zhu FH, Xue P, Jia MY. Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym Degrad Stab. 2006;91:2874–83.

    Article  CAS  Google Scholar 

  23. Levchik SV, Weil ED. Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polym Adv Technol. 2005;16:707–16.

    Article  CAS  Google Scholar 

  24. d’Almeida ALFS, Barreto DW, Calado V, d’Almeida JRM. Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim. 2008;91:405–8.

    Article  Google Scholar 

  25. Biagiotti J, Puglia D, Kenny JM. A review on natural fibre-based composites-part I: structure, processing and properties of vegetable fibres. J Nat Fibers. 2004;1:37–68.

    Article  CAS  Google Scholar 

  26. Das S, Saha AK, Choudhury PK, Basak RK, Mitra BC, Todd T, et al. Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J Appl Polym Sci. 2000;76:1652–61.

    Article  CAS  Google Scholar 

  27. Demirbas A, Arin G. An overview of biomass pyrolysis. Energy Source. 2002;24:471–82.

    Article  CAS  Google Scholar 

  28. Yao F, Wu QL, Lei Y, Guo WH, Xu YJ. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  29. Gao M, Li SY, Sun CY. Thermal degradation of wood in air and nitrogen treated with basic nitrogen compounds and phosphoric acid. Combust Sci Technol. 2004;176:2057–70.

    Article  CAS  Google Scholar 

  30. Chapple S, Anandjiwala R. Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos. 2010;23:871–93.

    Article  CAS  Google Scholar 

  31. McNeill I, Memetea L, Cole W. A study of the products of PVC thermal degradation. Polym Degrad Stab. 1995;49:181–91.

    Article  CAS  Google Scholar 

  32. Leisztner L, Gal S, Szanto J, Kovacs L. Influence of the morphology of samples in the Pyrolysis of PVC. J Therm Anal. 1978;13:141–7.

    Article  CAS  Google Scholar 

  33. Karayildirim T, Yanik J, Yuksel M, Saglam M, Vasile C, Bockhorn H. The effect of some fillers on PVC degradation. J Anal Appl Pyrol. 2006;75:112–9.

    Article  CAS  Google Scholar 

  34. Wang QW. Principle of fire-retardant technology for wood. Harbin: Northeast Forestry University Press; 2000. p. 126–9.

    Google Scholar 

  35. Scudamore M, Briggs P, Prager F. Cone calorimetry—a review of tests carried out on plastics for the association of plastic manufacturers in Europe. Fire Mater. 1991;15:65–84.

    Article  CAS  Google Scholar 

  36. Hirschler MM. Heat release in fires. London: Elsevier Applied Sciences; 1992.

  37. Spearpoint MJ, Quintiere JG. Predicting the burning of wood using an integral model. Combust Flame. 2000;123:308–25.

    Article  CAS  Google Scholar 

  38. Li B, Wang J. Effect of curprous oxide in combination with molybdenum trioxide on smoke suppression in rigid poly (vinyl chloride). J Vinyl Addit Technol. 2001;7:37–42.

    Article  Google Scholar 

  39. Starnes W. Cone calorimetric study of copper-promoted smoke suppression and fire retardance of poly (vinyl chloride). Polym Degrad Stab. 2003;82:15–24.

    Article  CAS  Google Scholar 

  40. Li B. A study of the thermal decomposition and smoke suppression of poly(vinyl chloride) treated with metal oxides using a cone calorimeter at a high incident heat flux. Polym Degrad Stab. 2002;78:349–56.

    Article  CAS  Google Scholar 

  41. Lattimer RP, Pausch JB, Meuzelaar HLC. Pyrolysis studies of chlorinated poly (vinyl chloride). Macromolecules. 1983;16:1896–900.

    Article  CAS  Google Scholar 

  42. Stromberg RR, Straus S, Achhammer BG. Thermal decomposition of poly (vinyl chloride). J Polym Sci. 1959;35:355–68.

    Article  CAS  Google Scholar 

  43. Fabbri D, Tartari D, Trombini C. Analysis of poly(vinyl chloride) and other polymers in sediments and suspended matter of a coastal lagoon by pyrolysis-gas chromatography-mass spectrometry. Anal Chim Acta. 2000;413:3–11.

    Article  CAS  Google Scholar 

  44. Montaudo G, Puglisi C. Evolution of aromatics in the thermal degradation of poly (vinyl chloride): a mechanistic study. Polym Degrad Stab. 1991;33:229–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Chinese Natural Science Foundation for projects 30972313 and 31010103905 and the Breeding Plan of Excellent Doctoral Dissertation of Northeast Forestry University (GRAP09) in China. Y. Fang also thanks the China Scholarship Council (CSC) for financial support to study at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y., Wang, Q., Bai, X. et al. Thermal and burning properties of wood flour-poly(vinyl chloride) composite. J Therm Anal Calorim 109, 1577–1585 (2012). https://doi.org/10.1007/s10973-011-2071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2071-y

Keywords

Navigation