Skip to main content
Log in

Theoretical analysis of electronic and structural properties of anhydrous calcium oxalate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The results of theoretical analysis of the electronic and crystal structural properties and bonding in relation to thermal decomposition process in anhydrous calcium oxalate are presented. The methods used in this analysis—topological analysis of electron density (Bader’s Quantum Theory of Atoms in Molecules approach) obtained from DFT calculations performed by Wien2k package (Full Potential Linearized Augmented Plane Wave Method); bond order model (Cioslowski&Mixon), applied to topological properties of the electron density; as well as Brown’s Bond Valence Model (bonds valences and strength’, and bond and crystal strains, calculated from crystal structure and bonds lengths data) are described. The analysis of the obtained results shows that these methods allow us to explain the way of thermal decomposition process of anhydrous calcium oxalate to calcium carbonate as a decomposition product, and to describe the structural transition taking place during such process (from monoclinic anhydrous CaC2O4 to rhombohedral calcite structure). In the light of the results of our similar calculations performed previously for other anhydrous oxalates (zinc, cadmium silver, cobalt, and mercury) the proposed theoretical approach can be considered as promising and reliable tool, which allow analyzing the properties of the structure and bonding and hence predicting the most probable way of thermal decomposition process for given crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Małecka B, Drożdż-Cieśla E, Małecki A. Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochim Acta. 2004;423:13–8.

    Article  Google Scholar 

  2. Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics. In: Bamford CH, Tipper CFH, editors. Reactions in solid state, vol. 2. Amsterdam: Elsevier; 1980.

    Google Scholar 

  3. Boldyrev VV, Nevyantsev IS, Mikhailov YI, Khayretdinov EF. K voprosu o myekhanizmye tyermichyeskogo razlozhyeniya oksalatov. Kinet Katal. 1970;11:367–73.

    CAS  Google Scholar 

  4. Borchardt HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1957;79:41–6.

    Article  CAS  Google Scholar 

  5. Dollimore D. The thermal decomposition of oxalates. A review. Thermochim Acta. 1987;117:331–63.

    Article  CAS  Google Scholar 

  6. Randhawa BS, Kaur M. A comparative study on the thermal decomposition of some transition metal maleates and fumarates. J Therm Anal Calorim. 2007;89(1):251–5.

    Article  CAS  Google Scholar 

  7. Galwey AK, Brown ME. An appreciation of the chemical approach of V. V. Boldyrev to the study of the decomposition of solids. J Therm Anal Calorim. 2007;90(1):9–22.

    Article  CAS  Google Scholar 

  8. Fujita J, Nakamoto K, Kobayashi M. Infrared spectra of metallic complexes. III. The infrared spectra of metallic oxalates. J Phys Chem. 1957;61(7):1014–5.

    Article  CAS  Google Scholar 

  9. Rane S, Uskaikar H, Pednekar R, Mhalsikar R. The low temperature synthesis of metal oxides by novel hydrazine method. J Therm Anal Calorim. 2007;90(3):627–38.

    Article  CAS  Google Scholar 

  10. Bîrzescu M, Niculescu M, Dumitru R, Carp O, Segal E. Synthesis, structural characterization and thermal analysis of the cobalt(II) oxalate obtained through the reaction of 1,2-ethanediol with Co(NO3)2·6H2O. J Therm Anal Calorim. 2009;96(3):979–86.

    Article  Google Scholar 

  11. Koleżyński A, Małecki A. Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates. Part I: Electronic structure calculations. J Therm Anal Calorim. 2009;96(1):161–5.

    Article  Google Scholar 

  12. Koleżyński A, Małecki A. Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates. Part II: Correlations between the electronic structure and the ways of thermal decomposition. J Therm Anal Calorim. 2009;96(1):167–73.

    Article  Google Scholar 

  13. Koleżyński A, Małecki A. First principles studies of thermal decomposition of anhydrous zinc oxalate. J Therm Anal Calorim. 2009;96(2):645–51.

    Article  Google Scholar 

  14. Koleżyński A, Małecki A. Theoretical approach to thermal decomposition process of chosen anhydrous oxalates. J Therm Anal Calorim. 2009;97(1):77–83.

    Google Scholar 

  15. Koleżyński A, Małecki A. Theoretical studies of electronic and crystal structure properties of anhydrous mercury oxalate. J Therm Anal Calorim. (under review).

  16. Bader RFW. Atoms in molecules: a quantum theory. Oxford: Clarendon Press; 1990.

    Google Scholar 

  17. Brown ID. The chemical bond in inorganic chemistry: the bond valence model. Oxford: Oxford University Press; 2002.

    Google Scholar 

  18. Pauling L. The principles determining the structure of complex ionic crystals. J Am Chem Soc. 1929;51:1010–26.

    Article  CAS  Google Scholar 

  19. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, J. Luitz. WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Wien: Karlheinz Schwarz, Techn. Universität Wien; 2001. ISBN: 3-9501031-1-2.

  20. Slater JC. Wave functions in a periodic potential. Phys Rev. 1937;51:846–51.

    Article  CAS  Google Scholar 

  21. Loucks TL. Augmented plane wave method. New York: Benjamin; 1967.

    Google Scholar 

  22. Andersen OK. Simple approach to the band-structure problem. Solid State Commun. 1973;13(2):133–6.

    Article  Google Scholar 

  23. Hamann DR. Semiconductor charge densities with hard-core and soft-core pseudopotentials. Phys Rev Lett. 1979;42(10):662–5.

    Article  CAS  Google Scholar 

  24. Wimmer E, Krakauer H, Weinert M, Freeman AJ. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys Rev B. 1981;24(2):864–75.

    Article  CAS  Google Scholar 

  25. Singh DJ. Planewaves, pseudopotentials and the LAPW method. Dordrecht: Kluwer Academic Publishers; 1994.

    Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.

    Article  CAS  Google Scholar 

  27. Hochrein O, Annu T, Kniep R. Revealing the crystal structure of anhydrous calcium oxalate, Ca[C2O4], by a combination of atomistic simulation and Rietveld refinement. Z Anorg Allg Chem. 2008;634(11):1826–9.

    Article  CAS  Google Scholar 

  28. Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41(3):653–8.

    Article  CAS  Google Scholar 

  29. Bader RFW, Slee TS, Cremer D, Kraka E. Description of conjugation and hyperconjugation in terms of electron distributions. J Am Chem Soc. 1983;105(15):5061–8.

    Article  CAS  Google Scholar 

  30. Cioslowski J, Mixon ST. Covalent bond orders in the topological theory of atoms in molecules. J Am Chem Soc. 1991;113(11):4142–5.

    Article  CAS  Google Scholar 

  31. Howard ST, Lamarche O. Description of covalent bond orders using the charge density topology. J Phys Org Chem. 2003;16(2):133–41.

    Article  CAS  Google Scholar 

  32. Urusov VS, Orlov IP. State-of-art and perspectives of the bond–valence model in inorganic crystal chemistry. Crystallogr Rep. 1999;44(4):686–709.

    Google Scholar 

  33. Koleżyński A. Crystal structure, electronic structure and bonding properties of anhydrous metal oxalates. Habilitation monograph (in polish). In preparation. To be published in: Ceramics. Krakow: Papers of the Commission on Ceramic Science of Polish Academy of Sciences; 2010.

Download references

Acknowledgement

This work has been supported by AGH-UST Grant no 11.11.160.110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Koleżyński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koleżyński, A., Małecki, A. Theoretical analysis of electronic and structural properties of anhydrous calcium oxalate. J Therm Anal Calorim 99, 947–955 (2010). https://doi.org/10.1007/s10973-009-0535-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0535-0

Keywords

Navigation