Skip to main content
Log in

Chemical stability of Ba(Ce1−xTix)1−yYyO3 proton-conducting solid electrolytes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this work was to investigate the influence of titanium and yttrium dopants on chemical stability of selected Ba(Ce1−xTix)1−yYyO3 compounds. The presented results are the part of wider research concerning the crystallographic structure, microstructure, electrical and transport properties of these groups of materials.

Samples of Ba(Ce1−xTix)1−yYyO3 with x=0.05, 0.07, 0.10, 0.15, 0.20, 0.30 and y=0.05, 0.10, 0.20 (for x=0.05) were prepared by solid-state reaction method. Initially, differential thermal analysis (DTA) and thermogravimetry (TG) were used for optimization of preparation conditions. Subsequently, DTA-TG-MS (mass spectrometry) techniques were applied for evaluation of the stability of prepared materials in the presence of CO2. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results were used to determine the phase composition, structure and microstructure of materials and to assist the interpretation of DTA-TG-MS results.

The strong influence of Ti and Y dopants contents (x and y) on the properties was found. The introduction of Ti dopant led to the improvement of chemical stability against CO2. The lower Ti concentration the better resistance against CO2 corrosion was observed. Doping by Y had the opposite effect; the decrease of chemical stability was determined. In this case the higher Y dopant concentration the better resistance was observed. The attempt to correlate the influence of dopant on structure and chemical stability was also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics, 34 (1981) 359.

    Article  Google Scholar 

  2. N. Bonanos, K. S. Knight and B. Ellis, Solid State Ionics, 79 (1995) 161.

    Article  CAS  Google Scholar 

  3. T. Yajima, K. Koide, H. Takai, N. Fukatsu and H. Iwahara, Solid State Ionics, 79 (1995) 333.

    Article  CAS  Google Scholar 

  4. H. Iwahara, Solid State Ionics, 86–88 (1996) 9.

    Article  Google Scholar 

  5. F. L. Chen, O. T. Sørensen, G. Y. Meng and D. K. Peng, J. Thermal. Anal., 49 (1997) 1255.

    Article  CAS  Google Scholar 

  6. N. I. Matskevich, J. Therm. Anal. Cal., 90 (2007) 955.

    Article  CAS  Google Scholar 

  7. K. S. Knight and N. Bonanos, Mater. Res. Bull., 30 (1995) 347.

    Article  CAS  Google Scholar 

  8. J. Ranlov and K. Nielson, J. Mater. Chem., 4 (1994) 867.

    Article  Google Scholar 

  9. H. Iwahara, T. Esaka and H. Uchida, Solid State Ionics, 3/4 (1981) 359.

    Article  Google Scholar 

  10. H. Iwahara, H. Uchida, K. Ono and K. Ogaki, J. Electrochem. Soc., 135 (1988) 529.

    Article  CAS  Google Scholar 

  11. N. Bonanos, Solid State Ionics, 53/56 (1992) 967.

    Article  Google Scholar 

  12. T. Yaima and H. Iwahara, Solid State Ionics, 50 (1992) 281.

    Article  Google Scholar 

  13. I. Kosacki, J. G. M. Becht, R. van Landschoot and J. Schoonman, Solid State Ionics, 59 (1993) 287.

    Article  CAS  Google Scholar 

  14. T. Norby, Solid State Ionics, 40/41 (1990) 849.

    Article  Google Scholar 

  15. J. F. Liu and A. S. Nowick, Solid State Ionics, 50 (1992) 131.

    Article  CAS  Google Scholar 

  16. N. Bonanos, B. Ellis and M. N. Mahmood, Solid State Ionics, 44 (1991) 305.

    Article  CAS  Google Scholar 

  17. R. J. Phillips, N. Bonanos, F. W. Poulsen and E. O. Ahlgren, Solid State Ionics, 125 (1999) 389.

    Article  CAS  Google Scholar 

  18. K. H. Ryu and S. M. Haile, Solid State Ionics, 125 (1999) 355.

    Article  CAS  Google Scholar 

  19. K. Katahira, Y. Kohcki, T. Shimura and H. Iwahara, Solid State Ionics, 138 (2000) 91.

    Article  CAS  Google Scholar 

  20. W. Munch, K. D. Kreuer, G. Seifert and J. Maier, Solid State Ionics, 136/137 (2000) 183.

    Article  Google Scholar 

  21. P. Pasierb, E. Drożdż-Cieśla and M. Rekas, J. Power Sources, 181 (2008) 17.

    Article  CAS  Google Scholar 

  22. P. Pasierb, Annales de Chimie — Science de Matériaux, 33 (2008) 157.

    Google Scholar 

  23. E. Takayama-Muromachi and A. Navrotsky, J. Solid State Chem., 72 (1988) 244.

    Article  CAS  Google Scholar 

  24. S. M. Haile, G. Staneff and K. H. Ryu, J. Mater. Sci., 36 (2001) 1149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pasierb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasierb, P., Drożdż-Cieśla, E., Gajerski, R. et al. Chemical stability of Ba(Ce1−xTix)1−yYyO3 proton-conducting solid electrolytes. J Therm Anal Calorim 96, 475–480 (2009). https://doi.org/10.1007/s10973-008-9829-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9829-x

Keywords

Navigation