Skip to main content
Log in

Structural and proton conductivity study of BaZr1-xRExO3-δ(RE = Dy, Sm) ceramics for intermediate temperature solid oxide fuel cell electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Proton-conducting BaZr1-xRExO3-δ (RE = Dy, Sm) (x = 0.05, 0.10, 0.15, 0.20) ceramics were synthesized via a conventional mixed oxide reaction route. The X-ray diffraction patterns indicated that the studied compositions crystallized as a single phase in the cubic space group \( Pm\overline{3}m \). The site preference of the rare earth dopant has been proved by Rietveld analysis of the XRD profile, and the site occupancies have been derived for the studied compositions. Thermogravimetric study of the pre-hydrated samples showed a substantial mass loss, proving the oxygen vacancy filling by H2O after hydration of the samples. Dense microstructures of sintered ceramics are observed, with the Dy-doped compositions showing fairly larger grains (2–3 μm) as compared to Sm-doped barium zirconate. The electrical conductivity under wet N2 (\( {P}_{{\mathrm{H}}_2\mathrm{O}} \) = 0.031 atm) environment has been calculated using electrochemical impedance spectroscopy. The conductivity improved gradually with the increase in doping proportions, in case of both the dopants. However, the conductivity of Dy-doped BaZrO3 is found one order higher as compared to Sm-doped BaZrO3, for any fixed doping concentration. The total conductivity of 20% Dy-doped barium zirconate is found to be 4.15 × 10−3 S/cm at 600 °C which is the highest among the studied compositions. The high proton conductivity suggests the material suitable for solid oxide fuel cell electrolyte at intermediate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39(11):4370–4387

    CAS  PubMed  Google Scholar 

  2. Phair JW, Badwal SPS (2006) Review of proton conductors for hydrogen separation. Ionics 12(2):103–115

    CAS  Google Scholar 

  3. Badwal SPS, Giddey S, Munnings C (2013) Hydrogen production via solid electrolytic routes. Wiley Interdisciplinary Reviews: Energy and Environment 2(5):473–487

    CAS  Google Scholar 

  4. Zuo C, Liu M, Liu M (2012) Solid oxide fuel cells. Sol-Gel processing for conventional and alternative energy advances in Sol-Gel derived materials and technologies:7–36. doi:https://doi.org/10.1007/978-1-4614-1957-0_2

  5. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337

    CAS  Google Scholar 

  6. Agarkova EA, Borik MA, Volkova TV, Kulebyakin AV, Kuritsyna IE, Lomonova EE, Milovich FO, Myzina VA, Ryabochkina PA, Tabachkova NY (2019) Ionic conductivity, phase composition, and local defect structure of ZrO2-Gd2O3system solid solution crystals. J Solid State Electrochem 23(9):2619–2626. https://doi.org/10.1007/s10008-019-04357-8

    Article  CAS  Google Scholar 

  7. Bi L, Boulfrad S, Traversa E (2015) Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides. Solid State Ionics 275:101–105

    CAS  Google Scholar 

  8. Kharton VV, Yaremchenko AA, Naumovich EN, Marques FMB (2000) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. J Solid State Electrochem 4(5):243–266

    CAS  Google Scholar 

  9. Y-b Z, J-h L, Zeng Q, Liu W, C-s C (2009) Estimation of oxygen ionic conductivity in nickel-zirconia composite by oxygen permeation method. J Solid State Electrochem 14(6):945–949

    Google Scholar 

  10. Ricote S, Bonanos N, Manerbino A, Coors WG (2012) Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−δ) prepared by solid state reactive sintering at 1500 °C. Int J Hydrog Energy 37(9):7954–7961

    CAS  Google Scholar 

  11. Yan N, Zeng Y, Shalchi B, Wang W, Gao T, Rothenberg G, Luo J-l (2015) Discovery and understanding of the ambient-condition degradation of doped barium cerate proton-conducting Perovskite oxide in solid oxide fuel cells. J Electrochem Soc 162(14):F1408–F1414

    CAS  Google Scholar 

  12. Sawant P, Varma S, Wani BN, Bharadwaj SR (2012) Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC. Int J Hydrog Energy 37(4):3848–3856

    CAS  Google Scholar 

  13. Park K-Y, Lee T-H, Kim J-T, Lee N, Seo Y, Song S-J, Park J-Y (2014) Highly conductive barium zirconate-based carbonate composite electrolytes for intermediate temperature-protonic ceramic fuel cells. J Alloys Compd 585:103–110

    CAS  Google Scholar 

  14. Bohn HG, Schober T (2004) Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J Am Ceram Soc 83(4):768–772

    Google Scholar 

  15. Park K-Y, Seo Y, Kim KB, Song S-J, Park B, Park J-Y (2015) Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells. J Alloys Compd 639:435–444

    CAS  Google Scholar 

  16. Laidoudi M, Talib IA, Omar R (2000) Study of proton conduction in thulium-doped barium zirconates at high temperatures. J Phys D Appl Phys 33(23):3112–3120

    CAS  Google Scholar 

  17. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61(1–3):65–69

    CAS  Google Scholar 

  18. Gorelov VP, Balakireva VB, Kleshchev YN, Brusentsov VP (2001) Preparation and electrical Conductivityof BaZr1–xRxO3–a (R = Sc, Y, Ho, Dy, Gd, In). Inorg Mater 37(5):535–538

    CAS  Google Scholar 

  19. Laidoudi M, Talib IA, Omar R (2002) Investigation of the bulk conductivity of BaZr0.95M0.05O3-α (M =Al, Er, Ho, Tm, Yb and Y) under wet N2. J Phys D Appl Phys 35(4):397–401

    CAS  Google Scholar 

  20. Tao S, Irvine JTS (2007) Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325°C. J Solid State Chem 180(12):3493–3503

    CAS  Google Scholar 

  21. Yamazaki Y, Hernandez-Sanchez R, Haile SM (2009) High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem Mater 21(13):2755–2762

    CAS  Google Scholar 

  22. Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega JC, Grey CP, Haile SM (2013) Proton trapping in yttrium-doped barium zirconate. Nature materials 12:647. 23. Duval SBC, Holtappels P, Stimming U, Graule T (2008) effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3−δ. Solid State Ionics 179(21–26):1112–1115

    Google Scholar 

  23. Han D, Shinoda K, Sato S, Majima M, Uda T (2015) Correlation between electroconductive and structural properties of proton conductive acceptor-doped barium zirconate. J Mater Chem A 3(3):1243–1250

    CAS  Google Scholar 

  24. Han D, Hatada N, Uda T (2016) Microstructure, proton concentration and proton conductivity of barium zirconate doped with Ho, Er, Tm and Yb. J Electrochem Soc 163(6):F470–F476

    CAS  Google Scholar 

  25. Ahmed I, Eriksson S, Ahlberg E, Knee C, Karlsson M, Matic A, Engberg D, Borjesson L (2006) Proton conductivity and low temperature structure of In-doped BaZrO3. Solid State Ionics 177(26–32):2357–2362

    CAS  Google Scholar 

  26. Azad A-M, Subramaniam S, Dung TW (2002) On the development of high density barium metazirconate (BaZrO3) ceramics. J Alloys Compd 334(1–2):118–130

    CAS  Google Scholar 

  27. Ahmed I, Eriksson S, Ahlberg E, Knee C, Gotlind H, Johansson L, Karlsson M, Matic A, Borjesson L (2007) Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ionics 178(7–10):515–520

    CAS  Google Scholar 

  28. Satapathy A, Sinha E (2019) A comparative proton conductivity study on Yb-doped BaZrO3 perovskite at intermediate temperatures under wet N2 environment. J Alloys Compd 772:675–682

    CAS  Google Scholar 

  29. Satapathy A, Sinha E, Rout SK (2019) Investigation of proton conductivity in Sc and Yb co-doped barium zirconate ceramics. Materials Research Express 6(5):056305

    CAS  Google Scholar 

  30. Roy AK, Singh A, Kumari K, Amar Nath K, Prasad A, Prasad K (2012) Electrical properties and AC conductivity of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramic. ISRN Ceramics 2012:1–10

    Google Scholar 

  31. Souza ECCd, Muccillo R (2010) Properties and applications of perovskite proton conductors. Mater Res 13:385–394

  32. Stokes SJ, Islam MS (2010) Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3. J Mater Chem 20(30):6258

    CAS  Google Scholar 

  33. Ahmed I, Kinyanjui FG, Rahman SMH, Steegstra P, Eriksson SG, Ahlberg E (2010) Proton conductivity in mixed B-site doped perovskite oxide BaZr0.5In0.25Yb0.25O3−δ. Journal of The Electrochemical Society 157 (12):B1819

  34. Ahmed I, Knee CS, Eriksson S-G, Ahlberg E, Karlsson M, Matic A, Börjesson L (2008) Proton conduction in perovskite oxide BaZr0.5Yb0.5O3−δ prepared by wet chemical synthesis route. Journal of The Electrochemical Society 155 (11):P97

  35. Gu Y-J, Liu Z-G, Ouyang J-H, Zhou Y, Yan F-Y (2012) Synthesis, structure and electrical conductivity of BaZr1–xDyxO3–δ ceramics. Electrochim Acta 75:332–338

    CAS  Google Scholar 

  36. Han D, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K (2012) Tetravalent dysprosium in a perovskite-type oxide. Adv Mater 24(15):2051–2053

    CAS  PubMed  Google Scholar 

  37. Han D, Shinoda K, Uda T, Brennecka G (2014) Dopant site occupancy and chemical expansion in rare earth-doped barium zirconate. J Am Ceram Soc 97(2):643–650

    CAS  Google Scholar 

  38. Satapathy A, Sinha E, Sonu BK, Rout SK (2019) Conduction and relaxation phenomena in barium zirconate ceramic in wet N2 environment. J Alloys Compd 811:152042

    CAS  Google Scholar 

  39. Ahmed I, Karlsson M, Eriksson S-G, Ahlberg E, Knee CS, Larsson K, Azad AK, Matic A, Börjesson L (2008) Crystal structure and proton conductivity of BaZr0.9Sc0.1O3−δ. J Am Ceram Soc 91(9):3039–3044

    CAS  Google Scholar 

  40. Tsur Y, Dunbar TD, Randall CA (2001) Crystal and defect chemistry of rare earth cations in BaTiO3. J Electroceram 7(1):25–34

    CAS  Google Scholar 

  41. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32(5):751–767

    Google Scholar 

  42. Jia YQ (1991) Crystal radii and effective ionic radii of the rare earth ions. J Solid State Chem 95(1):184–187

    CAS  Google Scholar 

  43. Ricote S, Hudish G, O'Brien JR, Perry NH (2019) Non stoichiometry and lattice expansion of BaZr0.9Dy0.1O3-δ in oxidizing atmospheres. Solid State Ionics 330:33–39

    CAS  Google Scholar 

  44. Nasri S, Ben Hafsia AL, Tabellout M, Megdiche M (2016) Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3−δ perovskite oxides. RSC Adv 6(80):76659–76665

    CAS  Google Scholar 

  45. Shoar Abouzari MR, Berkemeier F, Schmitz G, Wilmer D (2009) On the physical interpretation of constant phase elements. Solid State Ionics 180(14–16):922–927

    CAS  Google Scholar 

  46. Wang WG, Li XY (2017) Impedance and dielectric relaxation spectroscopy studies on the calcium modified Na0.5Bi0.44Ca0.06TiO2.97 ceramics. AIP advances 7 (12):125318

  47. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn John Wiley & sons

    Google Scholar 

  48. Almond DP, West AR (1983) Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics 11(1):57–64

    CAS  Google Scholar 

  49. Lacz A (2016) Effect of microstructure on chemical stability and electrical properties of BaCe0.9Y0.1O3 − δ. Ionics 22(8):1405–1414

    CAS  Google Scholar 

  50. Braun A, Duval S, Ried P, Embs J, Juranyi F, Strässle T, Stimming U, Hempelmann R, Holtappels P, Graule T (2008) Proton diffusivity in the BaZr0.9Y0.1O3−δ proton conductor. J Appl Electrochem 39(4):471–475

    Google Scholar 

  51. Hempelmann R (1996) Hydrogen diffusion mechanism in proton conducting oxides. Phys B Condens Matter 226(1–3):72–77

    CAS  Google Scholar 

  52. Chen Q, Braun A, Yoon S, Bagdassarov N, Graule T (2011) Effect of lattice volume and compressive strain on the conductivity of BaCeY-oxide ceramic proton conductors. J Eur Ceram Soc 31(14):2657–2661

    CAS  Google Scholar 

  53. Noferini D, Frick B, Koza MM, Karlsson M (2018) Proton jump diffusion dynamics in hydrated barium zirconates studied by high-resolution neutron backscattering spectroscopy. J Mater Chem A 6(17):7538–7546

    CAS  Google Scholar 

  54. Björketun ME, Sundell PG, Wahnström G (2007) Effect of acceptor dopants on the proton mobility inBaZrO3: a density functional investigation. Phys Rev B 76(5):054307

    Google Scholar 

Download references

Acknowledgments

The author (Avishek Satapathy) would like to thank the council of scientific and industrial research (CSIR), Govt. of India for providing senior research fellowship [09/554/(0043)/2018-EMR-I)]. The corresponding author, Dr. Ela Sinha, thank the DST-SERB, Govt. of India for funding the research under project code EMR/2016/001582. The authors also thank the central instrumentation facility, Birla Institute of Technology, Mesra for providing necessary infrastructure to carry out our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ela Sinha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, A., Sinha, E. & Rout, S. Structural and proton conductivity study of BaZr1-xRExO3-δ(RE = Dy, Sm) ceramics for intermediate temperature solid oxide fuel cell electrolyte. J Solid State Electrochem 24, 1463–1473 (2020). https://doi.org/10.1007/s10008-019-04423-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04423-1

Keywords

Navigation