Skip to main content
Log in

Sorption of cesium on boreal forest soil I: the effect of grain size, organic matter and mineralogy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption of cesium was studied using humus and mineral soil samples. The effect of grain size, soil depth, organic matter and mineralogy were evaluated. The smallest grain size showed the highest sorption whilst it was rather equal for larger grains sizes. The sorption of cesium increased with soil depth being the lowest in the humus. Among the mineral soil layers the highest retention was found in the layer enriched with clay fraction. Muscovite retained cesium fairly well in pure water and model soil solution. Quartz showed the poorest sorption in both solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Posiva (2009) Olkiluoto site description 2008: Part 1. Posiva 2009-01, pp 1–390

  2. Posiva (2013) Safety case for the disposal of spent nuclear fuel at Olkiluoto: Biosphere Assessment 2012. Posiva 2012-10, pp 1–251

  3. Haapanen R (2006) Results of monitoring at Olkiluoto in 2005: Environment. Posiva working report 2006-68, pp 1–99

  4. Lusa M, Ämmälä K, Hakanen M, Lehto J, Lahdenperä AM (2009) Chemical and geotechnical analyses of soil samples from Olkiluoto for sudies on sorption in soils. Posiva Working Report 2009-33, pp 1–152

  5. Lehto J, Xiaolin H (2010) Chemistry and analysis of radionuclides—laboratory techniques and methodology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Sparks DL (2003) Environmental soil chemistry. Academic Press, San Diego

    Google Scholar 

  7. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen R-T, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2007) The Geochemical Atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, Espoo, Finland

  8. Essington ME (2004) Soil and water chemistry: an integrative approach. CRC Press, Boca Raton

    Google Scholar 

  9. Lusa M, Lempinen J, Ahola H, Söderlund M, Ikonen ATK, Lahdenperä A-M, Lehto J (2014) Sorption of cesium in young till soils. Radiochim Acta 102(7):645–658

    Article  CAS  Google Scholar 

  10. Lieser Κ, Steinkopff TH (1989) Chemistry of radioactive cesium in the hydrosphere and in the geosphere. Radiochim Acta 46(1):39–48

    CAS  Google Scholar 

  11. Cornell RM (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171(2):483–500

    Article  CAS  Google Scholar 

  12. Sawhney BL (1972) Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner 20(2):93–100

    Article  CAS  Google Scholar 

  13. Haapanen R, Aro L, Helin J, Hjerpe T, Ikonen ATK, Kirkkala T, Koivunen S, Lahdenperä A-M, Puhakka L, Rinne M, Salo T (2009) Olkiluoto biosphere description 2009. Posiva 2009–2:1–416

    Google Scholar 

  14. Hillel D (2009) Environmental soil physics. Academic Press, San Diego

    Google Scholar 

  15. Birkeland PW (1984) Soils and geomorphology. Oxford University Press, New York

    Google Scholar 

  16. Byegård J, Johansson H, Skålberg M, Tullborg E-L (1998) The interaction of sorbing and non-sorbing tracers with different Äspö rock types: sorption and diffusion experiments in the laboratory scale. SKB Technical Report 98–19:1–105

    Google Scholar 

  17. Brady NC, Weil RR (2002) The Nature and Properties of Soils. Pearson Education Ltd, Nwe Jersey

    Google Scholar 

  18. van Breemen N, Buurman P (2002) Soil formation. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  19. Parry SA, Hodson ME, Kemp SJ, Oelkers EH (2015) The surface area and reactivity of granitic soils: I. Dissolution rates of primary minerals as a function of depth and age deduced from field observations. Geoderma 237–238:21–35

    Article  Google Scholar 

  20. Jauhiainen E (1973) Age and degree of podzolization of sand soils on the coastal plain of northwest Finland. Commentationes Biologicae 68. Societas Scientiarum Fennica, Helsinki, Finland

  21. Livens FR, Baxter MS (1988) Particle size and radionuclide levels in some west Cumbrian soils. Sci Total Environ 70:1–17

    Article  CAS  Google Scholar 

  22. Li R, Yang H, Tang X, Wu C, Du M (2004) Distribution of 137Cs and organic carbon in particle size fractions in an lumi-haplic Acrisol of Southern China. Soil Sci 169(5):374–384

    Article  CAS  Google Scholar 

  23. Giannakopoulou F, Gasparatos D, Haidouti C, Massas I (2012) Sorption behavior of cesium in two greek soils: effects of Cs initial concentration, clay mineralogy, and particle-size fraction. Soil Sediment Contam 21(8):937–950

    Article  CAS  Google Scholar 

  24. Dumat C, Cheshire MV, Fraser AR, Shand CA, Staunton S (1997) The effect of removal of soil organic matter and iron on the adsorption of radiocaesium. Eur J Soil Sci 48(4):675–683

    Article  CAS  Google Scholar 

  25. Hsu C-N, Chang K-P (1994) Sorption and desorption behavior of cesium on soil components. Appl Radiat Isot 45(4):433–437

    Article  CAS  Google Scholar 

  26. Lofts S, Tipping EW, Sanchez AL, Dodd BA (2002) Modelling the role of humic acid in radiocaesium distribution in a British upland peat soil. J Environ Radioact 61(2):133–147

    Article  CAS  Google Scholar 

  27. Staunton S, Dumat C, Zsolnay A (2002) Possible role of organic matter in radiocaesium adsorption in soils. J Environ Radioact 58(2–3):163–173

    Article  CAS  Google Scholar 

  28. de Koning A, Konoplev AV, Comans RNJ (2007) Measuring the specific caesium sorption capacity of soils, sediments and clay minerals. Appl Geochem 22(1):219–229

    Article  Google Scholar 

  29. Dumat C, Staunton S (1999) Reduced adsorption of caesium on clay minerals caused by various humic substances. J Environ Radioact 46(2):187–200

    Article  CAS  Google Scholar 

  30. Torstenfelt B, Andersson K, Allard B (1982) Sorption of strontium and cesium on rocks and minerals. Chem Geol 36(1–2):123–137

    Article  CAS  Google Scholar 

  31. Gillham RW, Cherry JA, Lindsay LE (1980) Cesium distribution coefficients in unconsolidated geological materials. Health Phys 39(4):637–649

    Article  CAS  Google Scholar 

  32. Söderlund M, Hakanen M, Lehto J (2015) Sorption of niobium on boreal forest soil. Radiochim Acta. doi:10.1515/ract-2015-2429

    Google Scholar 

  33. Maslova MV, Gerasimova LG, Makarov VN, Naidenov V, Forsling W (2003) A study of structure and surface properties of cleaved mica particles. Russ J Appl Chem 76(6):867–870

    Article  CAS  Google Scholar 

  34. Chardon ES, Livens FR, Vaughan DJ (2006) Reactions of feldspar surfaces with aqueous solutions. Earth-Sci Rev 78(1–2):1–26

    Article  CAS  Google Scholar 

  35. Chardon ES, Bosbach D, Bryan ND, Lyon IC, Marquardt C, Römer J, Schild D, Vaughan DJ, Wincott PL, Wogelius RA, Livens FR (2008) Reactions of the feldspar surface with metal ions: sorption of Pb(II), U(VI) and Np(V), and surface analytical studies of reaction with Pb(II) and U(VI). Geochim Cosmochim Acta 72(2):288–297

    Article  CAS  Google Scholar 

  36. Lintinen P, Kahelin H, Lindqvist K, Kaija J (2003) Soil sample analyses of Olkiluoto. Posiva working report 2003–01, pp 1–123

  37. Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, Abrahamsen LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40:32–42

    Article  CAS  Google Scholar 

  38. Brouwer E, Baeyens B, Maes A, Cremers A (1983) Cesium and rubidium ion equilibria in illite clay. J Phys Chem 87(7):1213–1219

    Article  CAS  Google Scholar 

  39. Kyllönen J, Hakanen M, Lindberg A, Harjula R, Vehkamäki M, Lehto J (2014) Modeling of cesium sorption on biotite using cation exchange selectivity coefficients. Radiochim Acta 102(10):919–929

    Article  Google Scholar 

  40. Cho YH, Komarneni S (2009) Cation exchange equilibria of cesium and strontium with K-depleted biotite and muscovite. Appl Clay Sci 44(1–2):15–20

    Article  CAS  Google Scholar 

  41. Cho YH (2007) Cation exchange selectivity and hydrothemal reactions of K-depleted micas. PhD Thesis, The Pennsylvania State University, Pennsylvania. https://etda.libraries.psu.edu/paper/7988/ Accessed 10 Aug 2015

Download references

Acknowledgments

The authors wish to thank Posiva Oy for funding this study as a part of the research programme for a spent nuclear fuel repository. Finnish Doctoral Programme for Nuclear Engineering and Radiochemistry (YTERA) is thanked for the financial support of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervi Söderlund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Söderlund, M., Hakanen, M. & Lehto, J. Sorption of cesium on boreal forest soil I: the effect of grain size, organic matter and mineralogy. J Radioanal Nucl Chem 309, 637–645 (2016). https://doi.org/10.1007/s10967-015-4612-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4612-5

Keywords

Navigation