Skip to main content
Log in

Drawing Out the Structural Information About the First Hydration Layer of the Isolated Cl Anion Through the FTIR-ATR Difference Spectra

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Fourier transform infrared-attenuated total reflectance (FTIR-ATR) difference spectra of aqueous MgSO4, Na2SO4, NaCl and MgCl2 solutions against pure water were obtained at various concentrations. The difference spectra of the solutions showed distinct positive bands and negative bands in the O–H stretching region, indicating the influences of salts on structures of hydrogen-bonds between water molecules. Furthermore the difference spectra of MgCl2 solutions against NaCl solutions and those of MgSO4 solutions against Na2SO4 solutions with the same concentrations of anions (Cl or SO 2−4 , respectively) allowed extracting the structural difference of the first hydration layer between Mg2+ and Na+. Using SO 2−4 as a reference ion, structural information of the first hydration layer of the Cl anion was obtained according to the difference spectra of MgCl2 solutions against MgSO4 solutions and those of NaCl solutions against Na2SO4 solutions containing the same concentrations of cations (Mg2+ or Na+, respectively). The positive peak at ~3,407 cm−1 and negative peak at ~3,168 cm−1 in these spectra indicated that adding Cl decreased the strongest hydrogen-bond component and increased the relatively weaker one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Max, J.J., Chapados, C.: IR spectroscopy of aqueous alkali halide solutions: Pure salt-solvated water spectra and hydration numbers. J. Chem. Phys. 115, 2664–2675 (2001)

    Article  CAS  Google Scholar 

  2. Kebarle, P.: Ion thermochemistry and solvation from gas phase ion equilibriums. Ann. Rev. Phys. Chem. 28, 445–476 (1977)

    Article  CAS  Google Scholar 

  3. Eriksson, A., Kristiansson, O., Lindgren, J.: Hydration of ions in aqueous-solution studied by IR spectrscopy. J. Mol. Struct. 114, 455–458 (1984)

    Article  CAS  Google Scholar 

  4. Max, J.J., Trudel, M., Chapados, C.: Subtraction of the water spectra from the infrared spectrum of saline solutions. Appl. Spectrosc. 52, 234–239 (1998)

    Article  CAS  Google Scholar 

  5. Terpstra, P., Combes, D., Zwick, A.: Effect of salts on dynamics of water-A Raman-spectroscopy study. J. Chem. Phys. 92, 65–70 (1990)

    Article  CAS  Google Scholar 

  6. Chen, Y., Zhang, Y.H., Zhao, L.J.: ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions. Phys. Chem. Chem. Phys. 6, 537–542 (2004)

    Article  CAS  Google Scholar 

  7. Perera, L., Berkowitz, M.L.: Structures of Cl(H2O) n and F(H2O) n (n = 2,3,…,15) clusters. Molecular dynamics computer simulations. J. Chem. Phys. 100, 3085–3093 (1994)

    Article  CAS  Google Scholar 

  8. Perera, L., Berkowitz, M.L.: Many-body effects in molecular dynamics simulations of Na+(H2O) n , and Cl(H2O) n , clusters. J. Chem. Phys. 95, 1954–1963 (1991)

    Article  CAS  Google Scholar 

  9. Rudolph, W.W., Irmer, G., Hefter, G.T.: Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003)

    Article  CAS  Google Scholar 

  10. Pye, C.C., Rudolph, W.W.: An ab initio and Raman investigation of magnesium(II) hydration. J. Phys. Chem. A 102, 9933–9943 (1998)

    Article  CAS  Google Scholar 

  11. Buchner, R., Chen, T., Hefter, G.T.: Complexity in “simple” electrolyte solutions: Ion pairing in MgSO4(aq). J. Phys. Chem. B 108, 2365–2375 (2004)

    Article  CAS  Google Scholar 

  12. Zhang, H., Wang, S., Sun, C.C.: Ab initio investigation on ion-associated species and association process in aqueous Na2SO4 and Na2SO4/MgSO4 solutions. J. Chem. Phys. 135, 084309 (2011)

    Article  Google Scholar 

  13. Zhang, H., Zhang, Y.H., Wang, F.: Theoretical understanding on the υ 1-SO 2−4 band perturbed by the formation of magnesium sulfate ion pairs. J. Comput. Chem. 30, 493–503 (2009)

    Article  Google Scholar 

  14. White, J.A., Schwegler, E., Galli, G., Gygi, F.: The solvation of Na+ in water: First principles simulations. J. Chem. Phys. 113, 4668–4673 (2000)

    Article  CAS  Google Scholar 

  15. Zhu, S.B., Robinson, G.W.: Molecular-dynamics computer simulation of an aqueous NaCl solution: structure. J. Chem. Phys. 97, 4336–4348 (1992)

    Article  CAS  Google Scholar 

  16. Chandrasekhar, J., Spellmeyer, D.C., Jorgensen, W.L.: Energy component analysis for dilute aqueous-solutions of Li+, Na+, F, and Cl ions. J. Am. Chem. Soc. 106, 903–910 (1984)

    Article  CAS  Google Scholar 

  17. Nag, A., Chakraborty, D., Chandra, A.: Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. J. Chem. Sci. 120, 71–77 (2008)

    Article  CAS  Google Scholar 

  18. Bahadur, R., Russell, L.M.: Void-induced dissolution in molecular dynamics simulations of NaCl and water. J. Chem. Phys. 124, 154713 (2006)

    Article  Google Scholar 

  19. Kropman, M.F., Bakker, H.J.: Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2001)

    Article  CAS  Google Scholar 

  20. Max, J.J., Chapados, C.: Interpolation and extrapolation of infrared spectra of binary ionic aqueous solutions. Appl. Spectrosc. 53, 1601–1609 (1999)

    Article  CAS  Google Scholar 

  21. Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J.: Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301, 347–349 (2003)

    Article  CAS  Google Scholar 

  22. Kropman, M.F., Bakker, H.J.: Femtosecond mid-infrared spectroscopy of aqueous solvation shells. J. Chem. Phys. 115, 8942–8948 (2001)

    Article  CAS  Google Scholar 

  23. Buchner, R., Hefter, G.: Interactions and dynamics in electrolyte solutions by dielectric spectroscopy. Phys. Chem. Chem. Phys. 11, 8984–8999 (2009)

    Article  CAS  Google Scholar 

  24. Max, J.J., Chapados, C.: Infrared titration of aqueous NaOH by aqueous HCl. Can. J. Chem. 78, 64–72 (2000)

    Article  CAS  Google Scholar 

  25. Wei, Z.F., Zhang, Y.H., Zhao, L.J., Liu, J.H., Li, X.H.: Observation of the first hydration layer of isolated cations and anions through the FTIR-ATR difference spectra. J. Phys. Chem. A 109, 1337–1342 (2005)

    Article  CAS  Google Scholar 

  26. Liu, J.H., Zhang, Y.H., Wang, L.Y., Wei, Z.F.: Drawing out the structural information of the first layer of hydrated ions: ATR-FTIR spectroscopic studies on aqueous NH4NO3, NaNO3, and Mg(NO3)2 solutions. Spectrochim. Acta. A 61, 893–899 (2005)

    Article  Google Scholar 

  27. Walrafen, G.E.: Raman spectral studies of the effects of perchlorate ion on water structure. J. Chem. Phys. 52, 4176–4198 (1970)

    Article  CAS  Google Scholar 

  28. Zhang, Y.H., Chan, C.K.: Observations of water monomers in supersaturated NaClO4, LiClO4, and Mg(ClO4)2 droplets using Raman spectroscopy. J. Phys. Chem. A 107, 5956–5962 (2003)

    Article  CAS  Google Scholar 

  29. Carey, D.M., Korenowski, G.M.: Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 108, 2669–2675 (1998)

    Article  CAS  Google Scholar 

  30. Max, J.J., Chapados, C.: Influence of anomalous dispersion on the ATR spectra of aqueous solutions. Appl. Spectrosc. 53, 1045–1053 (1999)

    Article  CAS  Google Scholar 

  31. Sharp, K.A., Madan, B., Manas, E., Vanderkooi, J.M.: Water structure changes induced by hydrophobic and polar solutes revealed by simulations and infrared spectroscopy. J. Chem. Phys. 114, 1791–1796 (2001)

    Article  CAS  Google Scholar 

  32. Wang, Y., Tominaga, Y.: Dynamical structure of water in aqueous electrolyte solutions by low frequency Raman scattering. J. Chem. Phys. 101, 3453–3458 (1994)

    Article  CAS  Google Scholar 

  33. Wang, F., Zhang, Y.H., Li, S.H., Wang, L.Y., Zhao, L.J.: A strategy for single supersaturated droplet analysis: Confocal Raman investigations on the complicated hygroscopic properties of individual MgSO4 droplets on the quartz substrate. Anal. Chem. 77, 7148–7155 (2005)

    Article  CAS  Google Scholar 

  34. Riemenschneider, J., Holzmann, J., Ludwig, R.: Salt effects on the structure of water probed by attenuated total reflection infrared spectroscopy and molecular dynamics simulations. Chem. Phys. Chem. 9, 2731–2736 (2008)

    Article  CAS  Google Scholar 

  35. Marcus, Y.: Effect of ions on the structure of water: Structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (41175119, 20933001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, YC., Li, XH., Zhao, LJ. et al. Drawing Out the Structural Information About the First Hydration Layer of the Isolated Cl Anion Through the FTIR-ATR Difference Spectra. J Solution Chem 42, 459–469 (2013). https://doi.org/10.1007/s10953-013-9970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-9970-4

Keywords

Navigation