Skip to main content

Advertisement

Log in

A new low temperature approach to developing mesoporosity in metal-doped carbons for adsorption and catalysis

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Key factors in achieving effective adsorption are the size of the pores relative to those of the adsorbate molecules and often the presence of small metal particles which can confer catalytic activity. While microporous carbons are excellent adsorbents for small molecules they are not as effective for larger species. A new low temperature approach to activation using an oxygen gas pulsing technique to achieve a carbon with controllable meso/micropore structure is described which also minimises metal sintering. The porosity of the samples was analysed by nitrogen adsorption at 77 K. Microporous metal-doped ASC carbon showed significant increases in the level of mesoporosity, its mesopore volume increasing from 0.06 to 0.24 cm3 g−1. However, undoped BPL carbon treated under the same conditions remained unchanged. The catalytic effect of the metals in the ASC carbon is thought to account for the observed mesopore development. At the temperatures used, a continuous oxidative activation yielded no pore widening in either carbon, suggesting that the gas pulsing method is far more effective in increasing mesopore sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.B. Lyubchik, R. Benoit, F. Beguin, Carbon 40, 1287 (2002). doi:10.1016/S0008-6223(01)00288-3

    Article  CAS  Google Scholar 

  2. A. Bailey, G.A. Lawrie, M.R. Williams, Adsorpt. Sci. Technol. 11, 59 (1994)

    CAS  Google Scholar 

  3. R.V. Shende, V.V. Mahajani, Waste Manag. 22, 73 (2002). doi:10.1016/S0956-053X(01)00022-8

    Article  CAS  Google Scholar 

  4. Z. Hu, E.F. Vansant, Microporous Mater. 3, 603 (1995). doi:10.1016/0927-6513(94)00067-6

    Article  CAS  Google Scholar 

  5. S.-J. Park, W.-Y. Jung, J. Colloid Interface Sci. 250, 196 (2002)

    CAS  Google Scholar 

  6. D.F. Quinn, J.A. Holland, US patent 5071820 (1991)

  7. G. Bezzon, C.A. Luengo, G. Capobianco, Extended Abstracts Eurocarbon (GFEC, Strasbourg 1998), p. 349

    Google Scholar 

  8. X. Py, A. Guillot, B. Cagnon, Carbon 41, 1533 (2003). doi:10.1016/S0008-6223(03)00092-7

    Article  CAS  Google Scholar 

  9. Y. Suzin, L.C. Buettner, C.A. LeDuc, Carbon 36:1557 (1998) doi:10.1016/S0008-6223(97)00137-1

    Article  CAS  Google Scholar 

  10. P.A. Barnes, E.A. Dawson, G. Midgley, J. Chem. Soc. Faraday Trans. 88, 349 (1992). doi:10.1039/ft9928800349

    Article  CAS  Google Scholar 

  11. M.C.M. Alvim-Ferraz, C.M.T.B. Gasper, J. Porous Mater. 10, 47 (2003). doi:10.1023/A:1024034517665

    Article  CAS  Google Scholar 

  12. R.G. Grabenstetter, F.E. Blacet, Summary Tech. Report of Division 10 (NDRC, NDRC Washington DC;) (1946) p.40

  13. P.A. Barnes, M.J. Chinn, E.A. Dawson, P.R. Norman, Abstract 216th ACS National Meeting (Boston, Massachusetts US, 1998), P.100

  14. P.A. Barnes, M.J. Chinn, E.A. Dawson, P.R. Norman, Adsorpt. Sci. Technol. 20, 817 (2002). doi:10.1260/02636170260555750

    Article  CAS  Google Scholar 

  15. R.H. Bradley, Appl. Surf. Sci. 90, 271 (1995). doi:10.1016/0169-4332(95)00167-0

    Article  CAS  Google Scholar 

  16. E. Biron, R. Stavisky, Carbon 33, 1413 (1995). doi:10.1016/0008-6223(95)00089-V

    Article  CAS  Google Scholar 

  17. V. Deitz, J. Robinson, E. Pozomiek, Carbon 13, 181 (1975). doi:10.1016/0008-6223(75)90229-8

    Article  CAS  Google Scholar 

  18. P. Ehrburger, J.M. Lahaye, J. Catal. 100, 429 (1986). doi:10.1016/0021-9517(86)90109-0

    Article  CAS  Google Scholar 

  19. P. Ehrburger, J. Dentzer, J. Lahaye, P. Dziedzinl, R. Fangeat, Carbon 28, 113 (1990). doi:10.1016/0008-6223(90)90101-4

    Article  CAS  Google Scholar 

  20. F. Mahmood, M. Afzal, M. Saleem, H. Ahmad, J. Therm. Anal. 90, 1137 (1994). doi:10.1007/BF02546923

    Google Scholar 

  21. O.L. Zhuang, T. Kyotani, A. Tomita, Energy Fuels 8, 714 (1994). doi:10.1021/ef00045a028

    Article  CAS  Google Scholar 

  22. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Carbon 37, 1379 (1999). doi:10.1016/S0008-6223(98)00333-9

    Article  CAS  Google Scholar 

  23. C. Li, T.C. Brown, Carbon 39, 725 (2001). doi:10.1016/S0008-6223(00)00189-5

    Article  CAS  Google Scholar 

  24. Y.I. Metatov-Meytal, M. Sheintuch, G.E. Shter, G.S. Grader, Carbon 35, 1527 (1997). doi:10.1016/S0008-6223(97)00103-6

    Article  Google Scholar 

  25. M.M. van de Merwe, T.J. Bandosz, J. Colloid Interface Sci. 282, 102 (2005). doi:10.1016/j.jcis.2004.08.056

    Article  Google Scholar 

  26. Q.-L. Zhuang, T. Kyotani, A. Tomita, Carbon 32, 539 (1994). doi:10.1016/0008-6223(94)90177-5

    Article  CAS  Google Scholar 

  27. V. Strelko, D.J. Malik, M. Streat, Carbon 40, 95 (2002). doi:10.1016/S0008-6223(01)00082-3

    Article  CAS  Google Scholar 

  28. G. Mul, J.P.A. Neeft, F. Kapteijn, J.A. Moulijn, Carbon 36, 1269 (1998). doi:10.1016/S0008-6223(97)00209-1

    Article  CAS  Google Scholar 

  29. D.W. McKee, J. Catal. 108, 480 (1987). doi:10.1016/0021-9517(87)90195-3

    Article  CAS  Google Scholar 

  30. M.M. Dubinin, A.V. Astakhov, L.V. Radushkevich, Prog. Membr. Sci. 9, 1 (1975)

    CAS  Google Scholar 

  31. M.M. Dubinin, Carbon 23, 373 (1985). doi:10.1016/0008-6223(85)90029-6

    Article  CAS  Google Scholar 

  32. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1984), p. 218

    Google Scholar 

  33. E.P. Barrett, L.J. Joyner, P.H. Halenda, J. Am. Chem. Soc. 73, 373 (1951). doi:10.1021/ja01145a126

    Article  CAS  Google Scholar 

  34. Chemistry Webbook NIST, http://webbook.nist.gov/chemistry.

  35. R.C. Bansel, J.-P. Donnet, F. Stoeckli, Active Carbon (Marcel Dekker, New York, 1988), p. 30

    Google Scholar 

  36. M. Molina-Sabio, V. Perez, F. Rodriguez-Reinoso, Carbon 32, 1259 (1994). doi:10.1016/0008-6223(94)90111-2

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the UK Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, H.M., Dawson, E.A., Barnes, P.A. et al. A new low temperature approach to developing mesoporosity in metal-doped carbons for adsorption and catalysis. J Porous Mater 16, 557–564 (2009). https://doi.org/10.1007/s10934-008-9233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9233-8

Keywords

Navigation