Skip to main content
Log in

A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The goal of this work was to evaluate the effect of chemical modification of cellulose nanofibers (CNF) on the properties of polylactic acid (PLA) nanocomposites. Acetylated nanofibers (ACNF), with degree of substitution 1.07, were isolated from acetylated kenaf fibers by mechanical treatments. Acetylated nanofibers showed more hydrophobic properties compared to non-acetylated ones. The results showed that both crystallinity and thermal stability of acetylated nanofibers were lower than non-acetylated ones. The nanocomposites were prepared by premixing two PLA master batches, one with a high concentration of ACNF and the second with CNF. These were diluted to final concentrations (5 wt%) during the extrusion. The morphology studies of PLA and its nanocomposites showed nanofiber aggregates in both materials. The results showed that the tensile and dynamic mechanical properties were enhanced for both acetylated and non-acetylated nanocomposites compared to the neat PLA matrix while no significant improvement was observed for the acetylated nanocomposites compared to non-acetylated ones. However, the storage modulus increased slightly for acetylated nanocomposites compared to non-acetylated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) BioResources 4(2):626–639

    CAS  Google Scholar 

  2. Seydibeyoğlu MÖ, Oksman K (2008) Compos Sci Technol 68:908–914

    Article  Google Scholar 

  3. Mesquita JP, Donnici CL, Pereira FV (2010) Biomacromolecules 11:473–480

    Article  Google Scholar 

  4. Jonoobi M, Mathew AP, Oksman K (2012) Ind Crop Prod 40:232–238

    Article  CAS  Google Scholar 

  5. Mathew AP, Chakraborthy A, Oksman K, Sain M (2006) ACS symposium series, 938. Oxford University Press, USA

    Google Scholar 

  6. Bondeson D, Oksman K (2007) Compos Interface 14:617–630

    Article  CAS  Google Scholar 

  7. Bondeson D, Oksman K (2007) Compos Part A 38:2486–2492

    Article  Google Scholar 

  8. Lee KY, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724–2733

    Article  CAS  Google Scholar 

  9. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Compos Sci Technol 69:1293–1297

    Article  CAS  Google Scholar 

  10. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromolecules 11:454–464

    Article  CAS  Google Scholar 

  11. Helbert W, Cavaille JY, Dufresne A (1996) Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  12. Kvien I, Oksman K (2007) Appl Phys A 87:641–643

    Article  CAS  Google Scholar 

  13. Chakraborty A, Sain M, Kortschot M (2006) Holzforschung 60:53–58

    Article  CAS  Google Scholar 

  14. Gousse C, Chanzy H, Cerradab ML, Fleury E (2004) Polymer 45:1569–1575

    Article  CAS  Google Scholar 

  15. Ladouce L, Fleury E, Gousse C, Cantiani R, Chanzy H, Excoffier G (2000) US Pat 6(703):497

    Google Scholar 

  16. Cavaille JY, Chanzy H, Fleury E, Sassi JF (1997) US Pat 6:117545

    Google Scholar 

  17. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Biomacromolecules 8:1973–1978

    Article  CAS  Google Scholar 

  18. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  19. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Cellulose 172:299–307

    Article  Google Scholar 

  20. Kim DY, Nishiyama Y, Kuga S (2002) Cellulose 9:361–367

    Article  CAS  Google Scholar 

  21. Segal L, Creely L, Martin AE, Conrad CM (1959) Text Res J 29:786–794

    Article  CAS  Google Scholar 

  22. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) Compos Part A 36:1110–1118

    Article  Google Scholar 

  23. Li Y, Mai YW, Ye L (2000) Compos Sci Technol 60:2037–2055

    Article  CAS  Google Scholar 

  24. Zafeiropoulos NE, Dijon GG, Baillie CA (2007) Compos Part A 38:621–628

    Article  Google Scholar 

  25. Sassi JF, Chanzy H (1995) Cellulose 2:111–127

    Article  CAS  Google Scholar 

  26. Lee HL, Chen GC, Rowell RM (2004) J Appl Polym Sci 91:2465–2481

    Article  CAS  Google Scholar 

  27. Yin CY, Li JB, Xu Q, Peng Q, Liu YB, Shen XY (2007) Carbohydr Polym 67:147–154

    Article  CAS  Google Scholar 

  28. Sheng YJ, Jiang S, Tsao HK (2007) J Chem Phys 127:234704

    Article  Google Scholar 

  29. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille YJ (2005) Biomacromolecules 6:2732–2739

    Article  CAS  Google Scholar 

  30. Petersson L, Oksman K (2006) Compos Sci Technol 66:2187–2196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Bio4Energy program as well as Kempe Stiftelserna, (Sweden) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jonoobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonoobi, M., Mathew, A.P., Abdi, M.M. et al. A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion. J Polym Environ 20, 991–997 (2012). https://doi.org/10.1007/s10924-012-0503-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0503-9

Keywords

Navigation