Skip to main content
Log in

Symmetry-breaking in the independent particle model: nature of the singular behavior of Hartree–Fock potentials

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The nature of the singular behavior of Hartree–Fock (HF) potential energy surfaces (PESs) that arises in the presence of a spin-preserving instability of the relevant restricted HF solutions is illustrated by a simple π-electron model of the allyl radical as described by the Pariser–Parr–Pople semi-empirical Hamiltonian. The simplicity of this three-electron model system stems from a low dimension of the appropriate variational space which enables an independent direct analytical approach illustrating the appropriateness of doublet stability conditions for restricted open-shell HF (ROHF) solutions. At the same time it permits the derivation of explicit expressions for the energy providing a complete description of swallowtail or Whitney-fold catastrophe singularities on the corresponding PES that arise with the onset of a doublet instability. In particular, this simple model enables the computation of the part of the PES that is associated with unstable ROHF solutions and which would be difficult if not impossible to generate in full generality via standard self-consistent field iterative procedures in more complex situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paldus J., Veillard A.: Chem. Phys. Lett. 50, 6 (1977)

    Article  CAS  Google Scholar 

  2. Paldus J., Veillard A.: Mol. Phys. 35, 445 (1978)

    Article  CAS  Google Scholar 

  3. Bénard M.: J. Chem. Phys. 71, 2546 (1979)

    Article  Google Scholar 

  4. Bénard M., Paldus J.: J. Chem. Phys. 72, 6546 (1980)

    Article  Google Scholar 

  5. Paldus J., Chin E.: Int. J. Quantum Chem. 24, 373 (1983)

    Article  CAS  Google Scholar 

  6. Paldus J., Čížek J.: Can. J. Chem. 63, 1803 (1985)

    Article  CAS  Google Scholar 

  7. Bénard M., Laidlaw W.G., Paldus J.: Can. J. Chem. 63, 1797 (1985)

    Article  Google Scholar 

  8. Bénard M., Laidlaw W.G., Paldus J.: Chem. Phys. 103, 43 (1986)

    Article  Google Scholar 

  9. Li X., Paldus J.: J. Chem. Phys. 126, 224304 (2007)

    Article  Google Scholar 

  10. Holka F., Neogrády P., Urban M., Paldus J.: Collect. Czech. Chem. Commun. 72, 197 (2007)

    Article  CAS  Google Scholar 

  11. Li X., Paldus J.: Int. J. Quantum Chem. 108, 2117 (2008)

    Article  CAS  Google Scholar 

  12. Paldus J., Thiamová G.: J. Math. Chem. 44, 88 (2008)

    Article  CAS  Google Scholar 

  13. Thiamová G., Paldus J.: Eur. Phys. J. D 46, 453 (2008)

    Article  Google Scholar 

  14. Li X., Paldus J.: Int. J. Quantum Chem. 109, 1756 (2009)

    Article  CAS  Google Scholar 

  15. Li X., Paldus J.: J. Chem. Phys. 130, 084110 (2009)

    Article  Google Scholar 

  16. Li X., Paldus J.: Phys. Chem. Chem. Phys. 11, 5281 (2009)

    Article  CAS  Google Scholar 

  17. Li X., Paldus J.: J. Chem. Phys. 130, 164116 (2009)

    Article  Google Scholar 

  18. Fukutome H.: Int. J. Quantum Chem. 20, 955 (1981)

    Article  CAS  Google Scholar 

  19. J. Paldus, in Self-Consistent Field: Theory and Applications, ed. by R. Carbó, M. Klobukowski (Elsevier, Amsterdam, 1990), pp. 1–45

  20. M.M. Mestechkin, in Self-Consistent Field: Theory and Applications, ed. by R. Carbó, M. Klobukowski (Elsevier, Amsterdam, 1990), pp. 312–385

  21. J.L. Stuber, J. Paldus, in Fundamental World of Quantum Chemistry: A Tribute Volume to the Memory of Per-Olov Löwdin, vol. 1, ed. by R.J. Brändas, E.S. Kryachko (Kluwer, Dordrecht, 2003), pp. 67–139

  22. Thouless D.J.: Nucl. Phys. 21, 225 (1960)

    Article  CAS  Google Scholar 

  23. Čížek J., Paldus J.: J. Chem. Phys. 47, 3976 (1967)

    Article  Google Scholar 

  24. Paldus J., Čížek J.: Prog. Theor. Phys. (Kyoto) 42, 769 (1969)

    Article  CAS  Google Scholar 

  25. Paldus J., Čížek J.: Phys. Rev. A 2, 2268 (1970)

    Article  Google Scholar 

  26. Čížek J., Paldus J.: Phys. Rev. A 3, 525 (1971)

    Article  Google Scholar 

  27. Paldus J., Čížek J.: Chem. Phys. Lett. 3, 1 (1969)

    Article  CAS  Google Scholar 

  28. Paldus J., Čížek J.: J. Chem. Phys. 52, 2919 (1970)

    Article  CAS  Google Scholar 

  29. Čížek J., Paldus J.: J. Chem. Phys. 53, 821 (1970)

    Article  Google Scholar 

  30. Paldus J., Čížek J.: J. Chem. Phys. 54, 2293 (1971)

    Article  CAS  Google Scholar 

  31. Fukutome H.: Prog. Theor. Phys. (Kyoto) 45, 1382 (1971)

    Article  CAS  Google Scholar 

  32. Fukutome H.: Prog. Theor. Phys. (Kyoto) 52, 115 (1974)

    Article  CAS  Google Scholar 

  33. Fukutome H.: Prog. Theor. Phys. (Kyoto) 52, 1766 (1974)

    Article  Google Scholar 

  34. Fukutome H.: Prog. Theor. Phys. (Kyoto) 53, 1320 (1975)

    Article  Google Scholar 

  35. M. Ozaki, Prog. Theor. Phys. (Kyoto) 67, 415 (1982) and references therein

  36. Löwdin P.-O.: Rev. Mod. Phys. 35, 496 (1963)

    Article  Google Scholar 

  37. Paldus J., Čížek J., Keating B.A.: Phys. Rev. A 8, 640 (1973)

    Article  CAS  Google Scholar 

  38. Li X., Paldus J.: J. Chem. Phys. 134, 074301 (2011)

    Article  Google Scholar 

  39. Paldus J., Chin E., Grey M.G.: Int. J. Quantum Chem. 24, 395 (1983)

    Article  CAS  Google Scholar 

  40. Takahashi M., Paldus J.: Int. J. Quantum Chem. 26, 349 (1984)

    Article  CAS  Google Scholar 

  41. Takahashi M., Paldus J.: Can. J. Phys. 62, 1226 (1984)

    Article  CAS  Google Scholar 

  42. Paldus J., Takahashi M., Cho R.W.H.: Phys. Rev. B 30, 4267 (1984)

    Article  CAS  Google Scholar 

  43. Takahashi M., Paldus J.: Phys. Rev. B 31, 5121 (1985)

    Article  CAS  Google Scholar 

  44. Yannouleas C., Landman U.: Rep. Prog. Phys. 70, 2067 (2007)

    Article  CAS  Google Scholar 

  45. Ihn T., Ellenberger C., Ensslin K., Yannouleas C., Landman U., Driscoll D.C., Gossard A.C.: Int. J. Mod. Phys. B 21, 1316 (2007)

    Article  CAS  Google Scholar 

  46. Kowalski K., Jankowski K.: Phys. Rev. Lett. 81, 1195 (1998)

    Article  CAS  Google Scholar 

  47. J. Paldus, in Theoretical Chemistry: Advances and Perspectives, vol. 2, ed. by H. Eyring, D.J. Henderson (Academic Press, New York, 1976), pp. 131–290

  48. Goeppert-Mayer M., Sklar A.L.: J. Chem. Phys. 6, 635 (1938)

    Article  Google Scholar 

  49. Parr R.G.: The Quantum Theory of Molecular Electronic Structure. Benjamin, New York (1963)

    Google Scholar 

  50. Mataga N., Nishimoto K.: Z. Phys. Chem. (Frankfurt) 13, 140 (1957)

    Article  CAS  Google Scholar 

  51. Koutecký J., Paldus J., Zahradník R.: J. Chem. Phys. 36, 3129 (1962)

    Article  Google Scholar 

  52. Laforgue A., Čížek J., Paldus J.: J. Chem. Phys. 59, 2560 (1973)

    Article  CAS  Google Scholar 

  53. J. Koutecký, J. Paldus, J. Čížek, J. Chem. Phys. 83, 1722 (1985) and references therein

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Paldus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paldus, J., Sako, T., Li, X. et al. Symmetry-breaking in the independent particle model: nature of the singular behavior of Hartree–Fock potentials. J Math Chem 51, 427–450 (2013). https://doi.org/10.1007/s10910-012-0093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0093-8

Keywords

Navigation