Skip to main content

Advertisement

Log in

An incubating diseased-predator ecoepidemic model

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We present a model for transmissible diseases spreading among predators in a predator–prey system. Upon successful contact, a susceptible individual becomes infected but is not yet able to spread the disease further. After an incubation period, the diseased individual becomes infectious. We investigate the system’s equilibria by analytical and numerical means. For a suitable set of parameter values, the system shows persistent oscillations. The model also exhibits bistability of the coexistence equilibrium with the prey-only equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malchow, H., Petrovskii, S., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology. CRC, Boca Raton, Florida (2008)

    MATH  Google Scholar 

  2. Gao, L.Q., Hethcote, H.W.: Disease transmission models with density-dependent demographics. J. Math. Biol. 30, 717–731 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mena-Lorca, J., Hethcote, H.W.: Dynamic models of infectious diseases as regulator of population sizes. J. Math. Biol. 30, 693–716 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Beltrami, E., Carroll, T.O.: Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32, 857–863 (1994)

    Article  MATH  Google Scholar 

  5. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Venturino, E., The influence of diseases on Lotka–Volterra systems. IMA Preprint Series #913, IMA, Minneapolis, USA (1992)

  7. Venturino, E.: The influence of diseases on Lotka–Volterra systems. Rocky Mt. J. Math. 24, 381–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Venturino, E.: Epidemics in predator–prey models: disease among the prey. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, vol. 1: Theory of Epidemics, pp. 381–393. Wuertz Publishing Ltd, Winnipeg, Canada (1995)

    Google Scholar 

  9. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arino, O., El Abdllaoui, A., Mikram, J., Chattopadhyay, J.: Infection on prey population may act as a biological control in ratio-dependent predator–prey model. Nonlinearity 17, 1101–1116 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Delgado, M., Molina-Becerra, M., Suarez, A.: Relating disease and predation: equilibria of an epidemic model. Math. Methods Appl. Sci. 28, 349–362 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Han, L., Ma, Z., Hethcote, H.W.: Four predator–prey models with infectious diseases. Math. Comput. Model. 30, 849–858 (2001)

    Article  MathSciNet  Google Scholar 

  13. Haque, M., Venturino, E.: The role of transmissible diseases in Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006)

    Article  MATH  Google Scholar 

  14. Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    Article  MATH  Google Scholar 

  15. Venturino, E.: Ecoepidemic models with disease incubation and selective hunting. J. Comput. Appl. Math. 234, 2883–2901 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Pugliese, A.: An S→E→I epidemic model with varying population size. In: Busenberg, S., Martelli, M. (eds.) Differential Equations Models in Biology, Epidemiology and Ecology, pp. 121–138. Springer, Berlin (1991)

    Chapter  Google Scholar 

  18. Gao, L.Q., Mena-Lorca, J., Hethcote, H.W.: Four SEI endemic models with periodicity and separatrices. Math. Biosci. 128, 157–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, L.Q., Mena-Lorca, J., Hethcote, H.W.: Variations on a theme of SEI endemic models. In: Martelli, M., Cooke, C.L., Cumberbatch, E., Tang, B., Thieme, H.R. (eds.) Differential Equations and Applications to Biology and Industry, pp. 191–207. World Scientific, Singapore (1996)

    Google Scholar 

  20. Oliveira, N., Hilker, F.: Modelling disease introduction as biological control of invasive predators to preserve endangered prey. Bull. Math. Biol. 72, 444–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hilker, F., Schmitz, K.: Disease-induced stabilization of predator–prey oscillations. J. Theor. Biol. 255, 299–306 (2008)

    Article  Google Scholar 

  22. Hilker, F., Langlais, M., Malchow, H.: The Allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations. Am. Nat. 173, 72–88 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their suggestions that contributed to improve the paper. The authors are also indebted to Frank Hilker for a very useful discussion on this matter and for providing Fig. 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Venturino.

Additional information

All the authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tannoia, C., Torre, E. & Venturino, E. An incubating diseased-predator ecoepidemic model. J Biol Phys 38, 705–720 (2012). https://doi.org/10.1007/s10867-012-9281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9281-9

Keywords

AMS Mathematics Subject Classifications

Navigation