Skip to main content
Log in

Disease transmission models with density-dependent demographics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The models considered for the spread of an infectious disease in a population are of SIRS or SIS type with a standard incidence expression. The varying population size is described by a modification of the logistic differential equation which includes a term for disease-related deaths. The models have density-dependent restricted growth due to a decreasing birth rate and an increasing death rate as the population size increases towards its carrying capacity. Thresholds, equilibria and stability are determined for the systems of ordinary differential equations for each model. The persistence of the infectious disease and disease-related deaths can lead to a new equilibrium population size below the carrying capacity and can even cause the population to become extinct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M., Jackson, H. C., May, R. M., Smith, A. D. M.: Population dynamics of fox rabies in Europe. Nature 289, 765–777 (1981)

    Google Scholar 

  • Anderson, R. M., May, R. M.: Regulation and stability of host-parasite interactions. J. Anim. Ecol. 47, 219–247 (1978)

    Google Scholar 

  • Anderson, R. M., May, R. M.: Population biology of infectious diseases I. Nature 180, 361–367 (1979)

    Google Scholar 

  • Anderson, R. M., May, R. M., McLean, A. R.: Possible demographic consequences of AIDS in developing countries. Nature 332, 228–234 (1988)

    Google Scholar 

  • Brauer, F.: Epidemic models in populations of varying size. In: Castillo-Chavez, C., Levin, S. A., Shoemaker, C. (eds.) Mathematical approaches to ecological and environmental problem solving, pp. 109–123. Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  • Brauer, F.: Models for the spread of universally fatal diseases. J. Math. Biol. 28, 451–462 (1990)

    Google Scholar 

  • Bremermann, H. J., Thieme, H. R.: A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179–190 (1989)

    Google Scholar 

  • Busenberg, S. N., van den Driessche, P.: Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28, 257–270 (1990)

    Google Scholar 

  • Busenberg, S. N., Hadeler, K. P.: Demography and epidemics. Math. Biosci. 101, 41–62 (1990)

    Google Scholar 

  • Castillo-Chavez, C. C., Cooke, K. L., Huang, L., Levin, S. A.: On the role of long periods of infectiousness in the dynamics of AIDS, Part 1, Single population models. J. Math. Biol. 27, 373–398 (1989)

    Google Scholar 

  • Edelstein-Keshet, L.: Mathematical models in biology. New York: Random House 1988

    Google Scholar 

  • Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969

    Google Scholar 

  • Hethcote, H. W.: Qualitative analysis for communicable disease models. Math. Biosci. 28, 335–356 (1976)

    Google Scholar 

  • Hethcote, H. W.: Three basic epidemiological models. In: Gross, L., Hallam, T. G., Levin, S. A. (eds.) Applied mathematical ecology, pp. 119–144. Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  • Hethcote, H. W., Levin, S. A.: Periodicity in epidemiological models. In: Gross, L., Hallam, T. G. Levin, S. A. (eds.) Applied mathematical ecology, pp. 193–211. Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  • Hethcote, H. W., Stech, H. W., van den Driessche, P.: Periodicity and stability in epidemic models: a survey. In: Busenberg, S. N., Cooke, K. L. (eds.) Differential equations and applications in ecology, epidemic and populations problems, pp. 65–82. New York: Academic Press 1981

    Google Scholar 

  • Hethcote, H. W., van den Driessche, P.: Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287 (1991)

    Google Scholar 

  • Hyman, J. M., Stanley, E. A.: Using mathematical models to understand the AIDS epidemic. Math. Biosci. 90, 415–473 (1988)

    Google Scholar 

  • Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., Perry, T.: Modeling and analyzing HIV transmission: The effect of contact patterns. Math. Biosci. 92, 119–199 (1988)

    Google Scholar 

  • Jordan, D. W., Smith, P.: Nonlinear ordinary differential equations. Oxford: Clarendon Press 1987

    Google Scholar 

  • Liu, W. M., Hethcote, H. W., Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)

    CAS  PubMed  Google Scholar 

  • May, R. M., Anderson, R. M.: Regulation and stability of host-parasite population interactions. II. Destabilizing processes. J. Anim. Ecol. 47, 248–267 (1978)

    Google Scholar 

  • May, R. M., Anderson, R. M.: Population biology of infectious diseases II. Nature 280, 455–461 (1979)

    Google Scholar 

  • May, R. M., Anderson, R. M., McLean, A. R.: Possible demographic consequences of HIV/AIDS epidemics. Math. Biosci. 90, 475–505 (1988)

    Google Scholar 

  • Mena-Lorca J., Hethcote, H. W.: Dynamic models of infectious diseases as regulators of population sizes. J. Math. Biol 30, 693–716 (1992)

    Google Scholar 

  • Miller, R. K., Michel, A. N.: Ordinary differential equations. New York: Academic Press 1982

    Google Scholar 

  • Pugliese, A.: Population models for diseases with no recovery. J. Math. Biol. 28, 65–82 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by Centers for Disease Control contract 200-87-0515

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L.Q., Hethcote, H.W. Disease transmission models with density-dependent demographics. J. Math. Biol. 30, 717–731 (1992). https://doi.org/10.1007/BF00173265

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173265

Key words

Navigation