Skip to main content

Advertisement

Log in

Influence of spatial structure on effective nutrient diffusion in bacterial biofilms

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The main contribution of this paper is to use homogenization techniques to compute diffusion coefficients from experimental images of microbial biofilms. Our approach requires the analysis of several experimental spatial structures of biofilms in order to derive from them a Representative Volume Element (RVE). Then, we apply a suitable numerical procedure to the RVE to derive the diffusion coefficients. We show that diffusion coefficients significantly vary with the biofilm structure. These results suggest that microbial biofilm structures can favour nutrient access in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Costerton, J., Lewandowski, Z., Caldwell, D., Korber, D., Lappin-Scott, H.: Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995)

    Article  Google Scholar 

  2. Daims, H., Nielsen, P., Nielsen, J., Juretschko, S., Wagner, M.: Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci. Technol. 41(4–5), 85–90 (2000)

    Google Scholar 

  3. Beech, I., Sunner, J.: Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15(3), 181–186 (2004)

    Article  Google Scholar 

  4. Tijhuis, L., Van Loosdrecht, M., Heijnen, J.: Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol. Bioeng. 44(5), 595–608 (1994)

    Article  Google Scholar 

  5. Wanner, O., Reichert, P.: Mathematical modeling of mixed-culture biofilms. Biotechnol. Bioeng. 49(2), 172–184 (1996)

    Article  Google Scholar 

  6. Donlan, R., Costerton, J.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002)

    Article  Google Scholar 

  7. Stewart, P., Costerton, J.: Antibiotic resistance of bacteria in biofilms. Lancet 358(9276), 135–138 (2001)

    Article  Google Scholar 

  8. De Beer, D., Stoodley, P., Roe, F., Lewandowski, Z.: Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43(11), 1131–1138 (1994)

    Article  Google Scholar 

  9. De Beer, D., Stoodley, P., Lewandowski, Z.: Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol. Bioeng. 53(2), 151–158 (1997)

    Article  Google Scholar 

  10. Libicki, S.B., Salmon, P.M., Robertson, C.R.: Effective diffusive permeability of a nonreacting solute in microbial cell aggregates. Biotechnol. Bioeng. 32(1), 68–85 (1988)

    Article  Google Scholar 

  11. Beyenal, H., Tanyolac, A.: The calculation of simultaneous effective diffusion coefficients of the substrates in a fluidized bed biofilm reactor. Water Sci. Technol. 29(10–11), 463–470 (1994)

    Google Scholar 

  12. Bakken, L., Olsen, R.: Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl. Environ. Microbiol. 45(4), 1188–1195 (1983)

    Google Scholar 

  13. Bratbak, G., Dundas, I.: Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 48(4), 755–757 (1984)

    Google Scholar 

  14. Matson, J., Characklis, W.: Diffusion into microbial aggregates. Water Res. 10(10), 877–885 (1976)

    Article  Google Scholar 

  15. La Cour Jansen, J., Harremoes, P.: Removal of soluble substrates in fixed films. Water Sci. Technol. 17(2–3), 1–14 (1985)

    Google Scholar 

  16. Dibdin, G.: Diffusion of sugars and carboxylic acids through human dental plaque in vitro. Arch. Oral Biol. 26(6), 515–523 (1981)

    Article  Google Scholar 

  17. Stewart, P.: A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol. Bioeng. 59(3), 261–272 (1998)

    Article  Google Scholar 

  18. Lamotta, E.: Internal diffusion and reaction in biological films. Environ. Sci. Technol. 10(8), 765–769 (1976)

    Article  Google Scholar 

  19. Ochoa, J., Stroeve, P., Whitaker, S.: Diffusion and reaction in cellular media. Chem. Eng. Sci. 41(12), 2999–3013 (1986)

    Article  Google Scholar 

  20. Ochoa-Tapia, J., Stroeve, P., Whitaker, S.: Diffusive transport in two-phase media: spatially periodic models and Maxwell’s theory for isotropic and anisotropic systems. Chem. Eng. Sci. 49(5), 709–726 (1994)

    Article  Google Scholar 

  21. Wood, B., Quintard, M., Whitaker, S.: Methods for predicting diffusion coefficients in biofilms and cellular systems. Methods Enzymol. 337, 319–338 (2001)

    Google Scholar 

  22. Wood, B., Quintard, M., Whitaker, S.: Calculation of effective diffusivities for biofilms and tissues. Biotechnol. Bioeng. 77(5), 495–516 (2002)

    Article  Google Scholar 

  23. Gujer, W., Wanner, O.: Modeling mixed population biofilms. In: Characklis, W.G., Marshall, K.C. (eds.) Biofilms. Wiley, New York (1990)

    Google Scholar 

  24. Fan, L.-S., Leyva-Ramos, R., Wisecarver, K., Zehner, B.: Diffusion of phenol through a biofilm grown on activated carbon particles in draft-tube three-phase fluidized-bed bioreactor. Biotechnol. Bioeng. 35(3), 279–286 (1990)

    Article  Google Scholar 

  25. Jefferson, K.: What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236(2), 163–173 (2004)

    Google Scholar 

  26. Roszak, D., Colwell, R.: Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51(3), 365–379 (1987)

    Google Scholar 

  27. Pamp, S., Tolker-Nielsen, T.: Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 189(6), 2531–2539 (2007)

    Article  Google Scholar 

  28. Thar, R., Kuhl, M.: Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246(1), 75–79 (2005)

    Article  Google Scholar 

  29. Allesen-Holm, M., Barken, K., Yang, L., Klausen, M., Webb, J., Kjelleberg, S., Molin, S., Givskov, M., Tolker-Nielsen, T.: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59(4), 1114–1128 (2006)

    Article  Google Scholar 

  30. Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J., Piveteau, P.: Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl. Environ. Microbiol. 74(14), 4491–4497 (2008)

    Article  Google Scholar 

  31. Xavier, J., Martinez-Garcia, E., Foster, K.: Social evolution of spatial patterns in bacterial biofilms: when conflict drives disorder. Am. Nat. 174(1), 1–12 (2009)

    Article  Google Scholar 

  32. Hunter, R., Beveridge, T.: High-resolution visualization of Pseudomonas aeruginosa pao1 biofilms by freeze-substitution transmission electron microscopy. J. Bacteriol. 187(22), 7619–7630 (2005)

    Article  Google Scholar 

  33. Dockery, J., Klapper, I.: Finger formation in biofilm layers. SIAM J. Appl. Math. 62(3), 853–869 (2002)

    Article  MathSciNet  Google Scholar 

  34. Aboudi, J.: Mechanics of composite materials - A Unified Micromechanical Approach. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  35. Dormieux, L., Molinari, A., Kondo, D.: Micromechanical approach to the behaviour of poroelastic materials. J. Mech. Phys. Solids. 50(10), 2203–2231 (2002)

    Article  MATH  ADS  Google Scholar 

  36. Fritsch, A., Dormieux, L., Hellmich, C., Sanahuja, J.: Mechanical behaviour of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J. Biomed. Mater. Res. A 88(1), 149–161 (2009)

    Google Scholar 

  37. Mathias, J.-D., Tessier-Doyen, N.: Homogenization of glass/alumina two-phase materials using a cohesive zone model. Comput. Mater. Sci. 43(4), 1081–1085 (2008)

    Article  Google Scholar 

  38. Wood, B., Whitaker, S.: Diffusion and reaction in biofilms. Chem. Eng. Sci. 53(3), 397–425 (1998)

    Article  Google Scholar 

  39. Wood, B.D., Golfier, F., Quintard, M.: Dispersive transport in porous media with biofilms: local mass equilibrium in simple unit cells. IJEWM J. 7(1–2), 24–48 (2011)

    Article  Google Scholar 

  40. Maxwell, J.C.: Treatise on Electricity and Magnetism, vol. I, 2nd edn., p. 400. Clarendon Press, Oxford (1881)

    Google Scholar 

  41. Chang, H.-C.: Effective diffusion and conduction in two-phase media: a unified approach. AICHE J. 29(5), 846–853 (1983)

    Article  Google Scholar 

  42. Beyenal, H., Şeker, Ş., Tanyolaç, A., Salih, B.: Diffusion coefficients of phenol and oxygen in a biofilm of Pseudomonas putida. AICHE J. 43(1), 243–250 (1997)

    Article  Google Scholar 

  43. Fu, Y.-C., Zhang, T.C., Bishop, P.L.: Determination of effective oxygen diffusivity in biofilms grown in a completely mixed biodrum reactor. Water Sci. Technol. 29(10–11), 455–462 (1994)

    Google Scholar 

  44. Lawrence, J.R., Wolfaardt, G.M., Korber, D.R.: Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl. Environ. Microbiol. 60(4), 1166–1173 (1994)

    Google Scholar 

  45. Kreft, J.-U., Picioreanu, C., Wimpenny, J., Van Loosdrecht, M.: Individual-based modelling of biofilms. Microbiology 147(11), 2897–2912 (2001)

    Google Scholar 

  46. Monod, J.: Recherches sur la croissance des cultures bacteriennes, 211 pp. Hermann & Cie, Paris (1942)

    Google Scholar 

  47. Picioreanu, C., Kreft, J.-U., Van Loosdrecht, M.: Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70(5), 3024–3040 (2004)

    Article  Google Scholar 

  48. Xavier, J.B., Picioreanu, C., Abdul Rani, S., Van Loosdrecht, M.C.M., Stewart, P.S.: Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix - a modelling study. Microbiology 151(12), 3817–3832 (2005)

    Article  Google Scholar 

  49. Golfier, F., Wood, B.D., Orgogozo, L., Quintard, M., Bues, M.: Biofilms in porous media: development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions. Adv. Water Resour. 32(3), 463–485 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the project ANR DISCO (ANR DISCO 09-SYSC-003, SYSCOMM call). The first author’s work is carried out at the French Regional Council of Auvergne. This publication only reflects the authors’ view.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Denis Mathias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guélon, T., Mathias, JD. & Deffuant, G. Influence of spatial structure on effective nutrient diffusion in bacterial biofilms. J Biol Phys 38, 573–588 (2012). https://doi.org/10.1007/s10867-012-9272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9272-x

Keywords

Navigation