Skip to main content
Log in

The sodium pumping NADH:quinone oxidoreductase (Na+-NQR), a unique redox-driven ion pump

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique Na+ pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na+-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na+ across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na+-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2

Similar content being viewed by others

References

  • Backiel J, Juárez O, Zagorevski DV, Wang Z, Nilges MJ, Barquera B (2008) Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Biochemistry 47:11273–11284

    Article  CAS  Google Scholar 

  • Baradaran, R., Berrisford, J. M., Minhas, G. S., and Sazanov, L. a (2013) Crystal structure of the entire respiratory complex I. Nature 494, 443–8 [online] http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3672946&tool=pmcentrez&rendertype=abstract.

  • Barquera B, Hase CC, Gennis RB (2001) Expression and mutagenesis of the NqrC subunit of the NQR respiratory Na + pump from Vibrio cholerae with covalently attached FMN. FEBS Lett 492:45–49

    Article  CAS  Google Scholar 

  • Barquera, B., Hellwig, P., Zhou, W. D., Morgan, J. E., Hase, C. C., Gosink, K. K., Nilges, M., Bruesehoff, P. J., Roth, A., Lancaster, C. R. D., and Gennis, R. B. (2002) Purification and characterization of the recombinant Na + − translocating NADH : quinone oxidoreductase from vibrio cholerae. Biochemistry 41, 3781–3789 [online] < Go to ISI>://000174471600029.

  • Barquera B, Zhou W, Morgan JE, Gennis RB (2002b) Riboflavin is a component of the Na + −pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 99:10322–10324

    Article  CAS  Google Scholar 

  • Barquera B, Morgan JE, Lukoyanov D, Scholes CP, Gennis RB, Nilges MJ (2003) X- and W-band EPR and Q-band ENDOR studies of the flavin radical in the Na + −translocating NADH:quinone oxidoreductase from Vibrio cholerae. J Am Chem Soc 125:265–275

    Article  CAS  Google Scholar 

  • Barquera B, Nilges MJ, Morgan JE, Ramirez-Silva L, Zhou W, Gennis RB (2004) Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Biochemistry 43:12322–12330

    Article  CAS  Google Scholar 

  • Barquera, B. Ramirez-Silva, L., Morgan, J.E., and Nilges, M. (2006) A new flavin radical signal in the Na(+)-pumping NADH:quinone oxidoreductase from Vibrio cholerae. An EPR/electron nuclear double resonance investigation of the role of the covalently bound flavins in subunits B and C. J. Biol. Chem. 281, 36482–36491 [online] http://www.mendeley.com/import/ (Accessed May 14, 2014).

  • Beattie P, Tan K, Bourne RM, Leach D, Rich PR, Ward FB (1994) Cloning and sequencing of four structural genes for the Na(+)-translocating NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 356:333–338

    Article  CAS  Google Scholar 

  • Biegel E, Müller V (2010) Bacterial Na + −translocating ferredoxin:NAD + oxidoreductase. Proc Natl Acad Sci U S A 107:18138–18142

    Article  CAS  Google Scholar 

  • Biegel E, Schmidt S, Müller V (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11:1438–1443

    Article  CAS  Google Scholar 

  • Biegel E, Schmidt S, González JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634

    Article  CAS  Google Scholar 

  • Bogachev AV, Murtazina RA, Skulachev VP (1997) The Na+/e- stoichiometry of the Na + −motive NADH:quinone oxidoreductase in Vibrio alginolyticus. FEBS Lett 409:475–477

    Article  CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Barquera B, Verkhovsky MI (2001) Sodium-dependent steps in the redox reactions of the Na + −motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochemistry 40:7318–7323

    Article  CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Ruuge EK, Wikstrom M, Verkhovsky MI (2002) Kinetics of the spectral changes during reduction of the Na + −motive NADH: quinone oxidoreductase from Vibrio harveyi. Biochim Biophys Acta - Bioenerg 1556:113–120

    Article  CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI (2006) Thermodynamic properties of the redox centers of Na(+)-translocating NADH:quinone oxidoreductase. Biochemistry 45:3421–3428

    Article  CAS  Google Scholar 

  • Bogachev AV, Bertsova YV, Aitio O, Permi P, Verkhovsky MI (2007) Redox-dependent sodium binding by the Na(+)-translocating NADH:quinone oxidoreductase from Vibrio harveyi. Biochemistry 46:10186–10191

    Article  CAS  Google Scholar 

  • Bogachev AV, Belevich NP, Bertsova YV, Verkhovsky MI (2009a) Primary steps of the Na + −translocating NADH:ubiquinone oxidoreductase catalytic cycle resolved by the ultrafast freeze-quench approach. J Biol Chem 284:5533–5538

    Article  CAS  Google Scholar 

  • Bogachev AV, Bloch DA, Bertsova YV, Verkhovsky MI (2009b) Redox properties of the prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase. 2. study of the enzyme by optical spectroscopy. Biochemistry 48:6299–6304

    Article  CAS  Google Scholar 

  • Casutt, M. S., Huber, T., Brunisholz, R., Tao, M., Fritz, G., and Steuber, J. (2010) Localization and function of the membrane-bound riboflavin in the Na + −translocating NADH:quinone oxidoreductase (Na + −NQR) from Vibrio cholerae. J. Biol. Chem. 285, 27088–27099 [online] http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2930708&tool=pmcentrez&rendertype=abstract.

  • Casutt MS, Nedielkov R, Wendelspiess S, Vossler S, Gerken U, Murai M, Miyoshi H, Moller HM, Steuber J (2011) Localization of ubiquinone-8 in the Na + −pumping NADH: quinone oxidoreductase from Vibrio cholerae. J Biol Chem 286:40075–40082

    Article  CAS  Google Scholar 

  • Dimroth P (1994) Bacterial sodium ion-coupled energetics. Antonie Van Leeuwenhoek 65:381–395

    Article  CAS  Google Scholar 

  • Duffy EB, Barquera B (2006) Membrane topology mapping of the Na + −pumping NADH: quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 188:8343–8351

    Article  CAS  Google Scholar 

  • Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 71:825–835

    Article  CAS  Google Scholar 

  • Ganoth, A., Alhadeff, R., and Arkin, I. T. (2010) Computational study of the Na(+)/H (+) antiporter from vibrio parahaemolyticus. J. Mol. Model., 107–110 [online] http://www.ncbi.nlm.nih.gov/pubmed/21130998.

  • Ganoth A, Alhadeff R, Kohen D, Arkin IT (2011) Characterization of the Na+/H + Antiporter from Yersinia pestis. PLoS One 6:e26115

    Article  CAS  Google Scholar 

  • Häse CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370, table of contents

    Article  Google Scholar 

  • Hashimoto K, Ogawa W, Nishioka T, Tsuchiya T, Kuroda T (2013) Functionally cloned pdrM from streptococcus pneumoniae encodes a Na + Coupled multidrug efflux pump. PLoS One 8

  • Hayashi M, Hirai K, Unemoto T (1994) Cloning of the Na(+)-translocating NADH-quinone reductase gene from the marine bacterium vibrio alginolyticus and the expression of the beta-subunit in escherichia coli. FEBS Lett 356:330–332

    Article  CAS  Google Scholar 

  • Hayashi M, Nakayama Y, Unemoto T (2001a) Recent progress in the Na + −translocating NADH-quinone reductase from the marine vibrio alginolyticus. Biochim Biophys Acta - Bioenerg 1505:37–44

    Article  CAS  Google Scholar 

  • Hayashi M, Nakayama Y, Yasui M, Maeda M, Furuishi K, Unemoto T (2001b) FMN is covalently attached to a threonine residue in the NqrB and NqrC subunits of Na + −translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 488:5–8

    Article  CAS  Google Scholar 

  • Hayashi M, Shibata N, Nakayama Y, Yoshikawa K, Unemoto T (2002) Korormicin insensitivity in Vibrio alginolyticus is correlated with a single point mutation of Gly-140 in the NqrB subunit of the Na + −translocating NADH-quinone reductase. Arch Biochem Biophys 401:173–177

    Article  CAS  Google Scholar 

  • Heikal, A., Nakatani, Y., Dunn, E., Weimar, M. R., Day, C. L., Baker, E. N., Lott, J. S., Sazanov, L. a, and Cook, G. M. (2014) Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol. Microbiol. 91, 950–64 [online] http://www.ncbi.nlm.nih.gov/pubmed/24444429.

  • Hess, V., Schuchmann, K., and Müller, V. (2013) The ferredoxin:NAD + oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na + and is reversibly coupled to the membrane potential. J. Biol. Chem. 288, 31496–502 [online] http://www.ncbi.nlm.nih.gov/pubmed/24045950.

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H + antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–11202

    Article  CAS  Google Scholar 

  • Jeong HS, Jouanneau Y (2000) Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 182:1208–1214

    Article  CAS  Google Scholar 

  • Juarez, O., and Barquera, B. (2012) in Biochimica et Biophysica Acta - Bioenergetics pp. 1823–1832

  • Juárez O, Nilges MJ, Gillespie P, Cotton J, Barquera B (2008) Riboflavin is an active redox cofactor in the Na + −pumping NADH: quinone oxidoreductase (Na + −NQR) from Vibrio cholerae. J Biol Chem 283:33162–33167

    Article  Google Scholar 

  • Juárez O, Athearn K, Gillespie P, Barquera B (2009a) Acid residues in the transmembrane helices of the Na + −pumping NADH:quinone oxidoreductase from Vibrio cholerae involved in sodium translocation. Biochemistry 48:9516–9524

    Article  Google Scholar 

  • Juárez, O., Morgan, J. E., and Barquera, B. (2009) The Electron Transfer Pathway of the Na + −pumping NADH: Quinone Oxidoreductase from Vibrio cholerae. J. Biol. Chem. 284, 8963–8972 [online] http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2659253&tool=pmcentrez&rendertype=abstract.

  • Juárez O, Morgan JE, Nilges MJ, Barquera B (2010) Energy transducing redox steps of the Na + −pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 107:12505–12510

    Article  Google Scholar 

  • Juárez O, Shea ME, Makhatadze GI, Barquera B (2011) The role and specificity of the catalytic and regulatory cation-binding sites of the Na + −pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 286:26383–26390

    Article  Google Scholar 

  • Juarez, O., Shea, M.E., Makhatadze, G., Barquera, B. (2011) Aspartic acid 397 in subunit B of the Na + −pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity. J. Biol. Chem. [online] http://www.mendeley.com/dashboard/ (Accessed May 14, 2014).

  • Juarez O, Neehaul Y, Turk E, Chahboun N, DeMicco JM, Hellwig P, Barquera B (2012) The role of glycine residues 140 and 141 of subunit B in the functional ubiquinone binding site of the Na + −pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 287:25678–25685

    Article  CAS  Google Scholar 

  • Jung H (2001) Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim Biophys Acta Bioenerg 1505:131–143

    Article  CAS  Google Scholar 

  • Kan B, Habibi H, Schmid M, Liang W, Wang R, Wang D, Jungblut PR (2004) Proteome comparison of Vibrio cholerae cultured in aerobic and anaerobic conditions. Proteomics 4:3061–3067

    Article  CAS  Google Scholar 

  • Kato S, Yumoto I (2000) Detection of the Na(+)-translocating NADH-quinone reductase in marine bacteria using a PCR technique. Can J Microbiol 46:325–332

    Article  CAS  Google Scholar 

  • Kimura H, Young CR, Martinez A, DeLong EF (2011) Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium. ISME J 5:1641–1651

    Article  CAS  Google Scholar 

  • Kojima S, Yamamoto K, Kawagishi I, Homma M (1999) The polar flagellar motor of vibrio cholerae is driven by an Na + motive force. J Bacteriol 181:1927–1930

    CAS  Google Scholar 

  • Koo M-S, Lee J-H, Rah S-Y, Yeo W-S, Lee J-W, Lee K-L, Koh Y-S, Kang S-O, Roe J-H (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22:2614–2622

    Article  CAS  Google Scholar 

  • Kumagai H, Fujiwara T, Matsubara H, Saeki K (1997) Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry 36:5509–5521

    Article  CAS  Google Scholar 

  • Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S (2008) Discovery of a ferredoxin:NAD + −oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125:137–146

    Article  Google Scholar 

  • Nakayama Y, Hayashi M, Unemoto T (1998) Identification of six subunits constituting Na + −translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett 422:240–242

    Article  CAS  Google Scholar 

  • Nakayama Y, Hayashi M, Yoshikawa K, Mochida K, Unemoto T (1999) Inhibitor studies of a new antibiotic, korormicin, 2-n-heptyl-4-hydroxyquinoline N-oxide and Ag + toward the Na + −translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biol Pharm Bull 22:1064–1067

    CAS  Google Scholar 

  • Nedielkov, R., Steffen, W., Steuber, J., and Möller, H. M. (2013) NMR reveals double occupancy of quinone-type ligands in the catalytic quinone binding site of the Na + −translocating NADH: Quinone oxidoreductase from Vibrio cholerae. J. Biol. Chem. 288, 30597–606 [online] http://www.ncbi.nlm.nih.gov/pubmed/24003222.

  • Neehaul, Y., Juárez, O., Barquera, B., and Hellwig, P. (2012) Thermodynamic contribution to the regulation of electron transfer in the Na(+)-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 51, 4072–7 [online] http://www.ncbi.nlm.nih.gov/pubmed/22533880.

  • Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H + antiporters. Biochim Biophys Acta - Bioenerg 1505:144–157

    Article  CAS  Google Scholar 

  • Pfenninger-Li XD, Albracht SP, van Belzen R, Dimroth P (1996) NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na + pump. Biochemistry 35:6233–6242

    Article  CAS  Google Scholar 

  • Reyes-Prieto, A., Barquera, B. and Juarez (2014) Origin and evoliton of the sodium pumping NADH:quinone oxidoreductase. PLoS One 9

  • Rich PR, Meunier B, Ward EB (1995) Predicted structure and possible ionmotive mechanism of the sodium-linked NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 375:5–10

    Article  CAS  Google Scholar 

  • Saeki K, Kumagai H (1998) The rnf gene products in Rhodobacter capsulatus play an essential role in nitrogen fixation during anaerobic DMSO-dependent growth in the dark. Arch Microbiol 169:464–467

    Article  CAS  Google Scholar 

  • Sáez LP, García P, Martínez-Luque M, Klipp W, Blasco R, Castillo F (2001) Role for draTG and rnf genes in reduction of 2,4-dinitrophenol by Rhodobacter capsulatus. J Bacteriol 183:1780–1783

    Article  Google Scholar 

  • Schlegel, K., Welte, C., Deppenmeier, U., and Müller, V. (2012) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J. 279, 4444–52 [online] http://www.ncbi.nlm.nih.gov/pubmed/23066798.

  • Schneider D, Pohl T, Walter J, Dorner K, Kohlstadt M, Berger A, Spehr V, Friedrich T (2008) Assembly of the escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1777:735–739

    Article  CAS  Google Scholar 

  • Song, J., Ji, C., and Zhang, J. Z. H. (2014) Insights on Na(+) binding and conformational dynamics in multidrug and toxic compound extrusion transporter NorM. Proteins 82, 240–9 [online] http://www.ncbi.nlm.nih.gov/pubmed/23873591.

  • Tao M, Türk K, Diez J, Grütter MG, Fritz G, Steuber J (2006) Crystallization of the NADH-oxidizing domain of the Na + −translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Acta Crystallogr Sect F: Struct Biol Cryst Commun 62:110–112

    Article  CAS  Google Scholar 

  • Tokuda H, Unemoto T (1985) The Na(+)-motive respiratory chain of marine bacteria. Microbiol Sci 2(65–66):69–71

    Google Scholar 

  • Tremblay, P.-L., Zhang, T., Dar, S. a, Leang, C., and Lovley, D. R. (2012) The Rnf complex of clostridium ljungdahlii is a proton-translocating ferredoxin:NAD + oxidoreductase essential for autotrophic growth. MBio 4, e00406–12 [online] http://mbio.asm.org/content/4/1/e00406-12.full.

  • Unemoto T, Hayashi M (1993) Na(+)-translocating NADH-quinone reductase of marine and halophilic bacteria. J Bioenerg Biomembr 25:385–391

    Article  CAS  Google Scholar 

  • Wikstrom M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci 109:4431–4436

    Article  CAS  Google Scholar 

  • Wunsch P, Zumft WG (2005) Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol 187:1992–2001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Drs. Oscar Juarez and Joel Morgan for many discussions. Research in my laboratory has been supported by the NSF grant MCB-1052234.

This review is dedicated to the memory of Dr. Edgardo Escamilla and Dr. Armando Gomez-Puyou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Barquera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barquera, B. The sodium pumping NADH:quinone oxidoreductase (Na+-NQR), a unique redox-driven ion pump. J Bioenerg Biomembr 46, 289–298 (2014). https://doi.org/10.1007/s10863-014-9565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9565-9

Keywords

Navigation