Skip to main content
Log in

Na+-translocating NADH-quinone reductase of marine and halophilic bacteria

  • Minireview
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The respiratory chain of marine and moderately halophilic bacteria requires Na+ for maximum activity, and the site of Na+-dependent activation is located in the NADH-quinone reductase segment. The Na+-dependent NADH-quinone reductase purified from marine bacteriumVibrio alginolyticus is composed of three subunits, α, β, and γ, with apparentM r of 52, 46, and 32kDa, respectively. The FAD-containing β-subunit reacts with NADH and reduces ubiquinone-1 (Q-1) by a one-electron transfer pathway to produce ubisemiquinones. In the presence of the FMN-containing α-subunit and the γ-subunit, Q-1 is converted to ubiquinol-1 without the accumulation of free radicals. The reaction catalyzed by the α-subunit is strictly dependent on Na+ and is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), which is tightly coupled to the electrogenic extrusion of Na+. A similar type of Na+-translocating NADH-quinone reductase is widely distributed among marine and moderately halophilic bacteria. The respiratory chain ofV. alginolyticus contains another NADH-quinone reductase which is Na+ independent and has no energy-transducing capacity. These two types of NADH-quinone reductase are quite different with respect to their mode of quinone reduction and their sensitivity toward NADH preincubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avetisyan, A. V., Dibrov, P. A., Skulachev, V. P., and Sokolov, M. V. (1989).FEBS Lett. 254, 17–21.

    Google Scholar 

  • Avetisyan, A. V., Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1992).FEBS Lett. 306, 199–202.

    Google Scholar 

  • Dimroth, P. (1987).Microbiol. Rev. 51, 320–340.

    Google Scholar 

  • Dimroth, P., and Thomer, A. (1989).Arch. Microbiol. 151, 439–444.

    Google Scholar 

  • Drapeau, G. R., and MacLeod, R. A. (1963).Biochem. Biophys. Res. Commun. 12, 111–115.

    Google Scholar 

  • Efiok, B. J. S., and Webster, D. A. (1990).Biochem. Biophys. Res. Commun. 173, 370–375.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1984).Biochim. Biopys. Acta 767, 470–478.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1986).FEBS Lett. 202, 327–330.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1987).Biochim. Biopys. Acta 890, 47–54.

    Google Scholar 

  • Hayashi, M., Miyoshi, T., Takashina, S., and Unemoto, T. (1989).Biochim. Biophys. Acta 977, 62–69.

    Google Scholar 

  • Hayashi, M., Miyoshi, T., Sato, M., and Unemoto, T. (1992).Biochim. Biophys. Acta 1099, 145–151.

    Google Scholar 

  • Kakinuma, Y., and Unemoto, T. (1985).J. Bacteriol. 163, 1293–1295.

    Google Scholar 

  • Ken-Dror, S., Shneaiderman, R., and Avi-Dor, Y. (1984).Arch. Biochem. Biophys. 229, 640–649.

    Google Scholar 

  • Ken-Dror, S., Preger, R., and Avi-Dor, Y. (1986a).Arch. Biochem. Biophys. 244, 122–127.

    Google Scholar 

  • Ken-Dror, S., Lanyi, J. K., Schobert, B., and Avi-Dor, Y. (1986b).Arch. Biochem. Biophys. 244, 766–772.

    Google Scholar 

  • Kim, Y. J., Mizushima, S., and Tokuda, H. (1991).J. Biochem. 109, 616–621.

    Google Scholar 

  • Kitada, M., and Horikoshi, K. (1977).J. Bacteriol. 131, 784–788.

    Google Scholar 

  • Kostyrko, V. A., Semeykina, A. L., Skulachev, V. P., Smirnova, I. A., Vaghina, M. L., and Verkhovskaya, M. L. (1991).Eur. J. Biochem. 198, 527–534.

    Google Scholar 

  • Krulwich, T. A. (1986).J. Membr. Biol. 89, 113–125.

    Google Scholar 

  • Kushner, D. J. (1978). InMicrobial Life in Extreme Environment (Kushner, D. J., ed.), Academic Press, London, pp. 317–368.

    Google Scholar 

  • Lanyi, J. K. (1979).Biochim. Biophys. Acta 559, 377–397.

    Google Scholar 

  • MacLeod, R. A. (1965).Bacteriol. Rev. 29, 9–23.

    Google Scholar 

  • Matsushita, K., Ohnishi, T., and Kaback, H. R. (1987).Biochemistry 26, 7732–7737.

    Google Scholar 

  • Meinhardt, S. W., Wang, D. C., Hon-nami, K., Yagi, T., Oshima, T., and Ohnishi, T. (1990).J. Biol. Chem. 265, 1360–1368.

    Google Scholar 

  • Miyoshi-Akiyama, T., Hayashi, M., and Unemoto, T. (1993).Biochim. Biophys. Acta,1141, 283–287.

    Google Scholar 

  • Ohnishi, T., Meinhardt, S. W., Matsushita, K., and Kaback, H. R. (1987). InBioenergetics: Structure and Function of Energy-Transducing Systems (Ozawa, T., and Papa, S., eds.), Japan Sci. Soc. Press, Tokyo, pp. 19–29.

    Google Scholar 

  • Ragan, C. I. (1987)Curr. Top. Bioenerg. 15, 1–36.

    Google Scholar 

  • Reichelt, J. L., and Baumann, P. (1974).Arch. Microbiol. 97, 329–345.

    Google Scholar 

  • Schobert, B., and Lanyi, J. K. (1982).J. Biol. Chem. 257, 10306–10313.

    Google Scholar 

  • Semeykina, A. L., Skulachev, V. P., Verkhovskaya, M. L., Bulygina, E. S., and Chumakov, K. M. (1989).Eur. J. Biochem. 183, 671–678.

    Google Scholar 

  • Skulachev, V. P. (1989).FEBS Lett. 250, 106–114.

    Google Scholar 

  • Sminova, I. A., Vaghina, M. L., and Kostyrko, V. A. (1990).Biochim. Biophys. Acta 1016, 385–391.

    Google Scholar 

  • Takeda, Y., Fukunaga, N., and Sasaki, S. (1988).Plant Cell Physiol. 29, 207–214.

    Google Scholar 

  • Tokuda, H. (1983).Biochem. Biophys. Res. Commun. 114, 113–118.

    Google Scholar 

  • tokuda, H., and Unemoto, T. (1981).Biochem. Biophys. Res. Commun. 102, 265–271.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1984).J. Biol. Chem. 259, 7785–7790.

    Google Scholar 

  • Tokuda, H., and Kogure, K. (1989).J. Gen. Microbiol. 135, 703–709.

    Google Scholar 

  • Tokuda, H., Sugasawa, M., and Unemoto, T. (1982).J. Biol. Chem. 257, 788–794.

    Google Scholar 

  • Tsuchiya, T., and Shinoda, S. (1985).J. Bacteriol. 162, 794–798.

    Google Scholar 

  • Udagawa, T., Unemoto, T., and Tokuda, H. (1986).J. Biol. Chem. 261, 2616–2622.

    Google Scholar 

  • Unemoto, T., and Hayashi, M. (1979).J. Biochem. 85, 1461–1467.

    Google Scholar 

  • Unemoto, T., and Hayashi, M. (1989).J. Bioenerg. Biomembr. 21, 649–662.

    Google Scholar 

  • Unemoto, T., Hayashi, M., Kozuka, Y., and Hayashi, M. (1974). InEffect of the Ocean Environment on Microbial Activities (Corwell, R. R., and Morita, R. Y., eds.), University Park Press, Baltimore, pp. 46–71.

    Google Scholar 

  • Unemoto, T., Hayashi, M., and Hayashi, M. (1977).J. Biochem. 82, 1389–1395.

    Google Scholar 

  • Unemoto, T., Tokuda, H., and Hayashi, M. (1990). InThe Bacteria, Vol. XII: Bacterial Energetics (Krulwich, T. A., ed.), Academic Press, New York, pp. 33–54.

    Google Scholar 

  • Unemoto, T., Miyoshi, T., and Hayashi, M. (1992a).FEBS Lett. 306, 51–53.

    Google Scholar 

  • Unemoto, T., Akagawa, A., Mizugaki, M., and Hayashi, M. (1992b).J. Gen. Microbiol. 138, 1999–2005.

    Google Scholar 

  • Wong, P. T. S., Thompson, J., and MacLeod, R. A. (1969).J. Biol. Chem. 244, 1016–1025.

    Google Scholar 

  • Yagi, T. (1991).J. Bionerg. Biomembr. 23, 211–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unemoto, T., Hayashi, M. Na+-translocating NADH-quinone reductase of marine and halophilic bacteria. J Bioenerg Biomembr 25, 385–391 (1993). https://doi.org/10.1007/BF00762464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762464

Key words

Navigation