Skip to main content
Log in

Assessment of EFM as a new nondestructive technique for monitoring the corrosion inhibition of low chromium alloy steel in 0.5 M HCl by tyrosine

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrochemical frequency modulation (EFM), a nondestructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is applied here to investigate the inhibition performance of tyrosine (Tyr) toward corrosion of low chromium alloy steel in 0.50 M HCl. Measurements were conducted under various experimental conditions in the range of temperature (20–60 °C). Results obtained from EFM were compared with other traditional corrosion monitoring techniques, namely Tafel extrapolation, impedance, and weight loss. Polarization measurements showed that Tyr acted as a mixed-type inhibitor with cathodic predominance. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protected the metal against corrosive agents. Energy dispersive X-ray spectroscopy and scanning electron microscopy examinations of the electrode surface confirmed the existence of such an adsorbed film. The inhibition efficiency increased with increase in Tyr concentration, while it decreased with solution temperature. The adsorptive behavior of Tyr on the electrode surface followed Temkin-type isotherm. Thermodynamic functions for the adsorption process were determined. The data obtained from the different methods were in good agreements, which indicated that the EFM technique was valid for monitoring the corrosion inhibition under the studied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Theus GS, Daniel PL (1983) In: Proceedings of the eighth international Brown Boveri symposium, Baden, Switzerland, p 185

  2. NACE Publication (1982) Corrosion testing of chemical cleaning solvents, vol 21 Materials performance, 3M, p 48

  3. Rothwell AN (1992) J Corros Prev Contr 39:113

    CAS  Google Scholar 

  4. Mann GMW (1976) High temperature high pressure electrochemistry in aqueous solutions. NACE-4, Houston, p 34

    Google Scholar 

  5. Ghanem WA, Bayyoumi FM, Ateya BG (1996) Corros Sci 38:1171

    Article  CAS  Google Scholar 

  6. Majnouni MD, Jaffer AE (2003) In: Chemical cleaning a boiler—an overview, International water conference, paper no IWC-03-34, Pittsburgh

  7. Port RD, Herro HM (1991) The Nalco guide to boiler failure analysis. McGraw-Hill, New York

    Google Scholar 

  8. Arwood KI, Hale GL (1971) In: A method for determining need for chemical cleaning of high pressure boilers, American power conference, Chicago, vol 33, p 710

  9. Hargrave RE (1994) Mat Perform 33:51

    Google Scholar 

  10. Natarajan S, Babu SPK (2006) Mater Sci Eng A432:47

    Article  CAS  Google Scholar 

  11. Natarajn S, Sivan V (2003) Corros Prev Cont 50:7

    Google Scholar 

  12. Sathiyanarayanan S, Jeyaprabha C, Muralidharan S, Venkatachari G (2006) Appl Surf Sci 252:8107

    Article  CAS  Google Scholar 

  13. Awad HS, Abdel Gawad S (2005) Anti-Corros Meth Mater 52:328

    Article  CAS  Google Scholar 

  14. Thomas JGN (1980) In: Proc 5th European symposium on corrosion inhibitors, Ann Univ Ferrara, NS, Sez V, p 453

  15. Behpour M, Ghoreishi SM, Gandomi-Niasar A (2009) J Mater Sci 44:2444. doi:https://doi.org/10.1007/s10853-009-3309-7

    Article  CAS  Google Scholar 

  16. Balaji S, Upadhyaya A (2009) J Mater Sci 44:2310. doi:https://doi.org/10.1007/s10853-008-3020-4

    Article  CAS  Google Scholar 

  17. Sundararajan G, Phani PS, Jyothirmayi A (2009) J Mater Sci 44:2320. doi:https://doi.org/10.1007/s10853-008-3200-2

    Article  CAS  Google Scholar 

  18. Rao VS, Singhal LK (2009) J Mater Sci 44:2327. doi:https://doi.org/10.1007/s10853-008-2976-4

    Article  CAS  Google Scholar 

  19. Okayasu M, Sato K, Okada K et al (2009) J Mater Sci 44:306. doi:https://doi.org/10.1007/s10853-008-3053-8

    Article  CAS  Google Scholar 

  20. Gabriele R (2002) Corros Rev 20:509

    Article  Google Scholar 

  21. Lebrini M, Traisnel M, Lagrenee M, Mernari B, Bentiss F (2008) Corros Sci 50:473

    Article  CAS  Google Scholar 

  22. Oguzie EE, Li Y, Wang FH (2007) J Colloid Interf Sci 310:90

    Article  CAS  Google Scholar 

  23. Aksut AA, Onal NA (1995) Bull Electrochem 11:513

    CAS  Google Scholar 

  24. Kalota DJ, De S (1994) Corrosion 50:138

    Article  CAS  Google Scholar 

  25. Madkour L, Ghoneim M (1997) Bull Electrochem 13:1

    CAS  Google Scholar 

  26. Gomma GK (1998) Bull Electrochem 12:456

    Google Scholar 

  27. Morad MS, Hermas AA, Abdel-Aal MS (2002) J Chem Technol Biotechnol 77:486

    Article  CAS  Google Scholar 

  28. Ashassi-Sorkhabi H, Ghasemi Z, Seifzadah D (2005) Appl Surf Sci 249:408

    Article  CAS  Google Scholar 

  29. Amin MA, Abd El Rehim SS, Abdel-Fatah HTM (2009) Corros Sci 51:882

    Article  CAS  Google Scholar 

  30. Abdel-Rehim SS, Khaled KF, Abdel-Shafi NS (2006) Electrochim Acta 51:3267

    Article  CAS  Google Scholar 

  31. Bosch RW, Hubrecht J, Bogaerts WF, Syrett BC (2001) Corrosion 57:60

    Article  CAS  Google Scholar 

  32. Bosch RW, Bogaerts WF (1996) Corrosion 52:204

    Article  CAS  Google Scholar 

  33. Kus E, Mansfeld F (2006) Corros Sci 48:965

    Article  CAS  Google Scholar 

  34. Han L, Song S (2008) Corros Sci 50:1551

    Article  CAS  Google Scholar 

  35. Abdallah M, Helal EA, Fouda AS (2006) Corros Sci 48:1639

    Article  CAS  Google Scholar 

  36. Zhao T, Mu G (1999) Corros Sci 41:1937

    Article  CAS  Google Scholar 

  37. Abd El-Rehim SS, Hassan HH, Amin MA (2001) Mater Chem Phys 70:64

    Article  CAS  Google Scholar 

  38. Abd El-Rehim SS, Hassan HH, Amin MA (2002) Mater Chem Phys 78:337

    Article  Google Scholar 

  39. Khaled KF, Amin MA (2009) Corros Sci 51:2098

    Article  CAS  Google Scholar 

  40. Moretti G, Quartarone G, Tassan A (1996) Electrochim Acta 41:1971

    Article  CAS  Google Scholar 

  41. Jeyaprabha C, Sathiyanarayanan S, Venkatachari G (2005) Appl Surf Sci 246:108

    Article  CAS  Google Scholar 

  42. Flitt HJ, Schweinsberg DP (2005) Corros Sci 47:2125

    Article  CAS  Google Scholar 

  43. Flitt HJ, Schweinsberg DP (2005) Corros Sci 47:3034

    Article  CAS  Google Scholar 

  44. Abd El-Rehim SS, Hassan HH, Amin MA (2002) Appl Surf Sci 187:279

    Article  Google Scholar 

  45. Barcia OE, Mattos OR, Pebere N, Tribollet B (1993) J Electrochem Soc 140:2825

    Article  CAS  Google Scholar 

  46. Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) J Appl Electrochem 18:374

    Article  CAS  Google Scholar 

  47. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  48. Boukamamp BA (1980) Solid State Ionics 20:31

    Article  Google Scholar 

  49. International Report CT (1989) 89/214/128, University of Twente, Eindhoven, The Netherlands

  50. Benedetti AV, Sumodjo PTA, Nobe K, Cabot PL, Proud WG (1995) Electrochim Acta 40:2657

    Article  CAS  Google Scholar 

  51. Lorenz WJ, Mansfeld F (1981) Corros Sci 21:647

    Article  CAS  Google Scholar 

  52. McCafferty E, Hackerman N (1972) J Electrochem Soc 119:146

    Article  CAS  Google Scholar 

  53. Amin MA (2006) J Appl Electrochem 36:215

    Article  CAS  Google Scholar 

  54. Damaskin BB, Petrii OA, Batraktov B (1971) Adsorption of organic compounds on electrodes. Plenum Press, New York

    Book  Google Scholar 

  55. Do D (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London, p 10

    Book  Google Scholar 

  56. Khamis E, Mellucci I, Lantanision RM, El-Ashry ESH (1991) Corrosion 47:677

    Article  CAS  Google Scholar 

  57. Donahue FM, Nobe K (1965) J Electrochem Soc 112:886

    Article  CAS  Google Scholar 

  58. Durnie W, Marco RD, Jefferson A, Kinsella B (1999) J Electrochem Soc 146:1751

    Article  CAS  Google Scholar 

  59. Martinez S, Stern I (2002) Appl Surf Sci 199:83

    Article  CAS  Google Scholar 

  60. Martinez S (2003) Mater Chem Phys 77:97

    Article  CAS  Google Scholar 

  61. El-Sherbini EF (1999) Mater Chem Phys 60:286

    Article  Google Scholar 

  62. Bastidas JM, De Dambornea J, Vazquez AJ (1997) J Appl Electrochem 27:345

    Article  CAS  Google Scholar 

  63. Mansfeld F (1987) Corrosion Mechanism. Marcel Dekkar, New York, p 119

    Google Scholar 

  64. Antropov LI, Makushin EM, Panasenko VF (1981) Metal corrosion inhibitors. Kiev, Technika

  65. Hassan HH, Abdelghani E, Amin MA (2007) Electrochim Acta 52:6359

    Article  CAS  Google Scholar 

  66. Amin MA, Abd El-Rehim SS, El-Sherbini EEF, Bayoumi RS (2007) Electrochim Acta 52:3588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, M.A., Abd El Rehim, S.S., El-Naggar, M.M. et al. Assessment of EFM as a new nondestructive technique for monitoring the corrosion inhibition of low chromium alloy steel in 0.5 M HCl by tyrosine. J Mater Sci 44, 6258–6272 (2009). https://doi.org/10.1007/s10853-009-3856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3856-2

Keywords

Navigation