Skip to main content
Log in

Microwave initiated hydrothermal synthesis of nano-sized complex fluorides, KMF3 (K = Zn, Mn, Co, and Fe)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A microwave assisted hydrothermal method, where the advantages of both microwave and hydrothermal methods are utilized to synthesize complex fluoride KMF3 (M = Zn, Mn, Co, Fe), materials of technological importance, is proposed. The KMF3 metal fluorides synthesized feature nano-sized particles having well-defined cubic morphologies. The proposed synthesis, in contrast to the existing synthesis methods is very rapid, economical, and less complex in nature. The structural, thermal, optical, and chemical properties of synthesized powders are determined by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance spectra in the UV–VIS range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scott JF (1988) Ferroelectr Rev 1:1

    Google Scholar 

  2. Millis JF (1988) Nature 392:147. doi:https://doi.org/10.1038/32348

    Article  Google Scholar 

  3. Wessles BW (1995) Annu Rev Mater Sci 25:525

    Article  Google Scholar 

  4. Dzik GD, Sokolska I, Golab S, Baluka M (2000) J Alloy Comp 300:254. doi:https://doi.org/10.1016/S0925-8388(99)00779-3

    Article  Google Scholar 

  5. Su H, Jia Z, Shi C (2002) Chem Mater 14:310. doi:https://doi.org/10.1021/cm010648q

    Article  CAS  Google Scholar 

  6. Somiya S, Hirano SI, Yoshimura M, Yanagisawa K (1981) J Mater Sci 16:813. doi:https://doi.org/10.1007/BF02402800

    Article  CAS  Google Scholar 

  7. Zhao C, Feng S, Xu R, Shi C, Ni J (1997) Chem Commun (Camb) 10:945. doi:https://doi.org/10.1039/a607066c

    Article  Google Scholar 

  8. Zhao C, Feng S, Chao Z, Shi C, Xu R, Ni J (1996) Chem Commun (Camb) 14:1641. doi:https://doi.org/10.1039/cc9960001641

    Article  Google Scholar 

  9. Hua R, Jia Z, Xie D, Shi C (2002) Chem Lett 31:538. doi:https://doi.org/10.1246/cl.2002.538

    Article  Google Scholar 

  10. Lee J, Shin H, Lee J, Chung H, Zhang Q, Saito F (2003) Mater Trans 44:1457. doi:https://doi.org/10.2320/matertrans.44.1457

    Article  CAS  Google Scholar 

  11. Sreeja V, Joy PA (2007) Mater Res Bull 42:1570. doi:https://doi.org/10.1016/j.materresbull.2006.11.014

    Article  CAS  Google Scholar 

  12. Kumada N, Kinomura N, Komarneni S (1998) Mater Res Bull 33:1411. doi:https://doi.org/10.1016/S0025-5408(98)00116-0

    Article  CAS  Google Scholar 

  13. Komarneni S, Roy R, Li QH (1992) Mater Res Bull 27:1393. doi:https://doi.org/10.1016/0025-5408(92)90004-J

    Article  CAS  Google Scholar 

  14. Komarneni S, Li QH, Roy R (1994) J Math Chem 4:1903. doi:https://doi.org/10.1039/jm9940401903

    Article  CAS  Google Scholar 

  15. Komarneni S, Katsuki H (2002) Pure Appl Chem 74:1537. doi:https://doi.org/10.1351/pac200274091537

    Article  CAS  Google Scholar 

  16. Liu J, Li K, Wang H, Zhu M, Yan H (2004) Chem Phys Lett 396:429. doi:https://doi.org/10.1016/j.cplett.2004.08.094

    Article  CAS  Google Scholar 

  17. Khollam YB, Deshpande AS, Patil AJ, Potdar HS, Deshpande SB, Date SK (2001) Mater Chem Phys 71:235. doi:https://doi.org/10.1016/S0254-0584(01)00287-5

    Article  CAS  Google Scholar 

  18. Baldassari S, Komarneni S, Mariani E, Villa C (2005) Mater Res Bull 40:2014. doi:https://doi.org/10.1016/j.materresbull.2005.05.023

    Article  CAS  Google Scholar 

  19. Verma S, Joy PA, Khollam YB, Potdar HS, Deshpande SB (2004) Mater Lett 58:1092. doi:https://doi.org/10.1016/j.matlet.2003.08.025

    Article  CAS  Google Scholar 

  20. Kim C-K, Lee J-H, Katoh S, Murakami R, Yoshimura M (2001) Mater Res Bull 36:2241. doi:https://doi.org/10.1016/S0025-5408(01)00703-6

    Article  CAS  Google Scholar 

  21. Card No JCPDS 72–113, 72–109, 18–1006, 72,110, ICDD, PCPDFWIN v.2.1, JCPDS-International centre for diffraction data 2000

  22. Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Perkin, Eden Prairie, MN, USA

    Google Scholar 

  23. Fadley CS, Shirley DA, Freeman AG, Bagus PS, Mallow GV (1969) Phys Rev Lett 24:1397. doi:https://doi.org/10.1103/PhysRevLett.23.1397

    Article  Google Scholar 

  24. Kowalcyyk SP, Ley L, McFeely FR, Shirley DA (1977) Phys Rev B 15:4997. doi:https://doi.org/10.1103/PhysRevB.15.4997

    Article  Google Scholar 

  25. Sugawara F, Onuki H (1978) J Phys Soc Jpn 44:1045. doi:https://doi.org/10.1143/JPSJ.44.1045

    Article  CAS  Google Scholar 

  26. Onuki H, Sugawara F, Hirano M, Yamaguchi Y (1976) J Phys Soc Jpn 41:1807. doi:https://doi.org/10.1143/JPSJ.41.1807

    Article  CAS  Google Scholar 

  27. Okazaki A, Suemune Y (1962) J Phys Soc Jpn 17:204

    Article  CAS  Google Scholar 

  28. Sugano S, Shulman RG (1963) Phys Rev 130:517. doi:https://doi.org/10.1103/PhysRev.130.517

    Article  CAS  Google Scholar 

  29. Sahnoun M, Zbiri M, Daul C, Khenata R, Baltache H, Driz M (2005) Mater Chem Phys 91:185. doi:https://doi.org/10.1016/j.matchemphys.2004.11.019

    Article  CAS  Google Scholar 

  30. Horsch G, Paus P (1986) J Opt Commun 60:89. doi:https://doi.org/10.1016/0030-4018(86)90119-7

    Article  Google Scholar 

  31. Kubelka P, Munk F (1931) Z Tech Phys 12:593

    Google Scholar 

  32. Kortum G (1969) Reflectance spectroscopy principles methods, applications. Spinger-Verlag, New York

    Book  Google Scholar 

  33. Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630. doi:https://doi.org/10.1021/jp983555d

    Article  CAS  Google Scholar 

  34. Tauc J, Grigorov R, Vancu A (1966) Phys Status Solidi 15:627. doi:https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  35. Punkkinen MPJ (1999) Solid State Commun 11:477. doi:https://doi.org/10.1016/S0038-1098(99)00239-2

    Article  Google Scholar 

  36. Sahu BR, Kleinman L (2004) Phys Rev B 69:165202. doi:https://doi.org/10.1103/PhysRevB.69.165202

    Article  Google Scholar 

  37. Knausenberger WH, Tauber RN (1973) J Electrochem Soc 129:927. doi:https://doi.org/10.1149/1.2403602

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Professor Allan Kirkpatrick, Department Head, Mechanical Engineering, Colorado State University, for his continued help, encouragement, and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Manivannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parhi, P., Kramer, J. & Manivannan, V. Microwave initiated hydrothermal synthesis of nano-sized complex fluorides, KMF3 (K = Zn, Mn, Co, and Fe). J Mater Sci 43, 5540–5545 (2008). https://doi.org/10.1007/s10853-008-2833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2833-5

Keywords

Navigation