Skip to main content
Log in

Relation between grain boundary segregation and grain boundary character in FCC alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An analytical model of segregation at grain boundaries, which takes into account all five macroscopic parameters of grain boundary character, has been developed. The model is based on a combination of previous bond energy treatments of grain boundary energy and of segregation to free surfaces. It is tested by comparing its predictions against previous computations of segregation to symmetrical twist grain boundaries in simple fcc alloys obtained by Monte Carlo simulations in conjunction with embedded atom method potentials. The comparison shows good agreement with the previous computer simulations. Examples of model predictions in the case of asymmetric grain boundaries are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. GIBBS, “Collected Works” (Yale University Press, New Haven, CT, 1948), Vol. 1.

    MATH  Google Scholar 

  2. D. MCLEAN, “Grain Boundaries in Metals” (Clarendon Press, Oxford, 1957).

    Google Scholar 

  3. P. WYNBLATT and R. C. KU, in “Interfacial Segregation”, edited by W. C. Johnson and J. M. Blakely (American Society for Metals, Metals Park, OH, 1979) p. 115.

    Google Scholar 

  4. D. A. STEIGERWALD, S. J. MILLER and P. WYNBLATT, Surf. Sci. 155 (1985) 79.

    Article  CAS  ADS  Google Scholar 

  5. P. WYNBLATT and M. TAKASHIMA, Interf. Sci. 9 (2001) 265.

    Article  CAS  Google Scholar 

  6. Y. W. LEE and H. I. AARONSON, Acta Metall. 28 (1980) 539.

    Article  Google Scholar 

  7. Idem., Surf. Sci.95 (1980) 227.

    Article  CAS  ADS  Google Scholar 

  8. D. WOLF, Acta Metall. 37 (1989) 1983.

    Article  CAS  Google Scholar 

  9. Idem., Acta Metall.37 (1989) 2823.

    Article  CAS  Google Scholar 

  10. Idem., Acta Metall. Mater.38 (1990) 791.

    Article  CAS  Google Scholar 

  11. M. A. VAN HOVE and G. A. SOMORJAI, Surf. Sci. 92 (1980) 489.

    Article  CAS  ADS  Google Scholar 

  12. P. WYNBLATT and M. TAKASHIMA, in “Proceedings of HTC-2000, edited by N. Eustathopoulos, K. Nogi and N. Sobczac, Trans. JWRI (2001), Vol 30, p. 11.

  13. J. FRIEDEL, Avan. Phys. 3 (1954) 446.

    ADS  Google Scholar 

  14. J. D. ESHELBY, in “Progress in Solid Mechanics”, edited by Sneddon and Hill, (North-Holland, Amsterdam, 1961) Vol. 2, p. 275.

  15. D. UDLER and D. N. SEIDMAN, Phys. Stat. Sol. B 172 (1992) 267.

    Article  CAS  ADS  Google Scholar 

  16. Idem., Acta Metal. Mater.42 (1994) 1959.

    Article  CAS  Google Scholar 

  17. J. D. RITTNER and D. N. SEIDMAN, Phyical Rev. B 54 (1996) 6999.

    Article  CAS  ADS  Google Scholar 

  18. S. M. FOILES, M. I. BASKES and M. S. DAW, Phyical Rev. 33 (1985) 7983.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wynblatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynblatt, P., Shi, Z. Relation between grain boundary segregation and grain boundary character in FCC alloys. J Mater Sci 40, 2765–2773 (2005). https://doi.org/10.1007/s10853-005-2406-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2406-9

Keywords

Navigation