Skip to main content

Advertisement

Log in

Recent trends and open questions in grain boundary segregation

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recently, significant progress in the field of grain boundary segregation was achieved, for example, in better understanding and modeling the stabilization of nanocrystalline structures by grain boundary segregation, searching for more advanced approaches to theoretical calculation of segregation energies and development of the complexion approach. Nevertheless, with each progress, new important questions appear which need to be solved. Here, we focus on two basic questions appearing recently: How can be the experimental results on the grain boundary segregation compared reliably to their theoretical counterparts? Is the preferred segregation site of a solute in the grain boundary core substitutional or interstitial? We also show that the entropy of grain boundary segregation is a very important quantity which cannot be neglected in thermodynamic considerations as it plays a crucial role, for example, in prediction of thermodynamic characteristics of grain boundary segregation and in the preference of the segregation site at the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. W. Hampe: Beiträge zu der Metallurgie des Kupfers. Z. Berg-, Hütten- und Salinenwesen 23, 93 (1874).

    Google Scholar 

  2. M.T. Stewart, R. Thomas, K. Wauchope, W.C. Winegard, and B. Chalmers: New segregation phenomena in metals. Phys. Rev. 83, 657 (1951).

    Article  CAS  Google Scholar 

  3. E.D. Hondros, M.P. Seah, S. Hofmann, and P. Lejček: Surface and interfacial microchemistry. In Physical Metallurgy, 4th ed., R.W. Cahn and P. Haasen, eds. (North-Holland, Amsterdam, 1996); pp. 1201–1289.

    Chapter  Google Scholar 

  4. D. Kalderon: Steam turbine failure at Hinkley point ‘A’. Proc. Inst. Mech. Eng. 186, 341 (1972).

    Article  CAS  Google Scholar 

  5. M. Hashimoto, Y. Ishida, R. Yamamoto, and M. Doyama: Atomistic studies of grain boundary segregation in Fe–P and Fe–B alloys. I. Atomistic structure and stress distribution. Acta Metall. 32, 1 (1984).

    Article  CAS  Google Scholar 

  6. K. Masuda-Jindo: On the grain boundary segregation of sp-valence impurities in b.c.c. transition metal. Phys. Status Solidi B 134, 545 (1986).

    Article  CAS  Google Scholar 

  7. P. Lejček, M. Šob, and V. Paidar: Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog. Mater. Sci. 87, 83 (2017).

    Article  CAS  Google Scholar 

  8. P. Lejček: Grain Boundary Segregation in Metals (Springer, Berlin, 2010).

    Book  Google Scholar 

  9. H.A. Murdoch and C.A. Schuh: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61, 2121 (2013).

    Article  CAS  Google Scholar 

  10. H.A. Murdoch and C.A. Schuh: Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 28, 2154 (2013).

    Article  CAS  Google Scholar 

  11. T. Chookajorn and C.A. Schuh: Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys. Rev. B 89, 064102 (2014).

    Article  CAS  Google Scholar 

  12. M. Saber, C.C. Koch, and R.O. Scattergood: Thermodynamic grain size stabilization models: An overview. Mater. Res. Lett. 3, 65 (2015).

    Article  CAS  Google Scholar 

  13. F. Abdeljawad and S.M. Foiles: Stabilization of nanocrystalline alloys via grain boundary segregation: A diffuse interface model. Acta Mater. 101, 159 (2015).

    Article  CAS  Google Scholar 

  14. T. Liang, Z. Chen, X. Yang, J. Zhang, and P. Zhang: The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys. Int. J. Mater. Res. 108, 435 (2017).

    Article  CAS  Google Scholar 

  15. N. Zhou, T. Hu, J. Huang, and J. Luo: Stabilization of nanocrystalline alloys at high-temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160 (2016).

    Article  CAS  Google Scholar 

  16. J. Svoboda and F.D. Fischer: Abnormal grain growth: A non-equilibrium thermodynamic model for multigrain binary systems. Modell. Simul. Mater. Sci. Eng. 22, 015013 (2014).

    Article  CAS  Google Scholar 

  17. O. Waseda, H. Goldenstein, G.F.B. Lenz Silva, A. Neiva, P. Chantrenne, J. Morthomas, M. Perez, C.S. Becquart, and R.G.A. Veiga: Stability of nanocrystalline Ni-based alloys: Coupling Monte Carlo and molecular dynamics simulations. Modell. Simul. Mater. Sci. Eng. 25, 075005 (2017).

    Article  Google Scholar 

  18. T. Chookajorn and C.A. Schuh: Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at.% Ti. Acta Mater. 73, 128 (2014).

    Article  CAS  Google Scholar 

  19. F. Abdeljawad, P. Lu, N. Argibay, B.G. Clarke, B.L. Boyce, and S.M. Foiles: Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater. 126, 528 (2017).

    Article  CAS  Google Scholar 

  20. Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, and Y.M. Zhao: A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation conditions. J. Alloys Compd. 608, 338 (2014).

    Article  CAS  Google Scholar 

  21. J. Luo: A short review of high-temperature wetting and complexion transitions with a critical assessment of their influence on liquid metal embrittlement and corrosion. Corrosion 72, 897 (2016).

    Article  CAS  Google Scholar 

  22. S. Kobayashi, T. Maruyama, S. Saito, S. Tsurekawa, and T. Watanabe: In situ observations of crack propagation and role of grain boundary microstructure in nickel embrittled by sulfur. J. Mater. Sci. 49, 4007 (2014).

    Article  CAS  Google Scholar 

  23. B. Djamal, R.L. Gall, and I.K. Lefkaier: Effect of small content and annealing temperature on the intergranular fracturing susceptibility of metallic nickel. Surf. Rev. Lett. 23, 1650050 (2016).

    Article  CAS  Google Scholar 

  24. Z.W. Li, X.S. Kong, L. Wei, C.S. Liu, and Q.F. Fang: Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects. Chin. Phys. B 23, 106107 (2014).

    Article  CAS  Google Scholar 

  25. D. Scheiber, V.I. Razumovskiy, P. Pusching, R. Pippan, and L. Romaner: Ab initio description of segregation and cohesion of grain boundaries in W–25 at.% Re alloys. Acta Mater. 88, 180 (2015).

    Article  CAS  Google Scholar 

  26. P. Lejček, P. Šandera, J. Horníková, P. Řehák, and J. Pokluda: Grain boundary segregation of elements of groups 14 and 15 and its consequences for intergranular cohesion of ferritic iron. J. Mater. Sci. 52, 5822 (2017).

    Article  CAS  Google Scholar 

  27. Y. Mehta, V.V. Dabhade, and G.P. Chaudhari: Effect of silicon and nitrogen on the microstructure and mechanical behavior of high-phosphorus steels. Metallogr., Microstruct., Anal. 5, 384 (2016).

    Article  CAS  Google Scholar 

  28. X. He, S. Wu, L. Jia, D. Wang, Y. Dou, and W. Yang: Grain boundary segregation of substitutional solutes/impurities and grain boundary decohesion in bcc Fe. Energy Procedia 127, 377 (2017).

    Article  CAS  Google Scholar 

  29. R.I. Babicheva, S.V. Dmitriev, L. Bai, Z. Ying, G. Kang, and K. Zhou: Effect of grain boundary segregation on the deformation mechanism and mechanical properties of nanocrystalline binary aluminum alloys. Comput. Mater. Sci. 117, 445 (2016).

    Article  CAS  Google Scholar 

  30. A.V. Zinovev, M.G. Bapanina, R.I. Babicheva, N.A. Enikeev, S.V. Dmitriev, and K. Zhou: Deformation of nanocrystalline binary aluminum alloys with segregation of Mg, Co and Ti at grain boundaries. Phys. Met. Metallogr. 118, 65 (2017).

    Article  CAS  Google Scholar 

  31. X. Sauvage, S. Lee, K. Matsuda, and Z. Horita: Origin of the influence of Cu and Ag micro-additions on the age hardening behavior of ultrafine-grained Al–Mg–Si alloys. J. Alloys Compd. 710, 199 (2017).

    Article  CAS  Google Scholar 

  32. I. Basu, K.G. Pradeep, C. Mießen, L.A. Barrales-Mora, and T. Salman: The role of atomic scale segregation in designing highly ductile magnesium alloy. Acta Mater. 116, 77 (2016).

    Article  CAS  Google Scholar 

  33. M.G. Jo, P.P. Madakashira, J.Y. Suh, and H.N. Han: Effect of nitrogen on microstructure and mechanical properties of vanadium. Mater. Sci. Eng., A 675, 92 (2016).

    Article  CAS  Google Scholar 

  34. S. Shi, L. Zhu, H. Zhang, and Z. Sun: Segregation effects of Y, Ti, Cr, and Si on the intergranular fracture of niobium. J. Alloys Compd. 711, 637 (2017).

    Article  CAS  Google Scholar 

  35. A.I. Kovalev, D.L. Wainstein, and A.Y. Rashkovskiy: Al grain boundary segregations in doped intermetallic NiAl and their effect on brittleness at room temperature. Bull. Russ. Acad. Sci. Phys. 80, 1253 (2016).

    Article  CAS  Google Scholar 

  36. M.A. Gibson and C.A. Schuh: Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. Acta Mater. 95, 145 (2015).

    Article  CAS  Google Scholar 

  37. M.A. Gibson and C.A. Schuh: A survey of ab initio calculations shows that segregation induced grain boundary embrittlement is predicted by bond breaking arguments. Scr. Mater. 113, 55 (2016).

    Article  CAS  Google Scholar 

  38. V.A. Esin and Y. Souhar: Solvent grain boundary diffusion in binary solid solutions: A new approach to evaluate solute grain boundary segregation. Philos. Mag. 94, 4066 (2014).

    Article  CAS  Google Scholar 

  39. G. Kaptay: Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation. J. Mater. Sci. 51, 1738 (2016).

    Article  CAS  Google Scholar 

  40. P.E. L’vov and V.V. Svetukhin: Influence of grain boundaries on the distribution of components in binary alloys. Phys. Solid State 59, 2453 (2017).

    Article  Google Scholar 

  41. P. Lejček and S. Hofmann: Interstitial and substitutional solute segregation at individual grain boundaries of α-iron: Data revisited. J. Phys.: Condens. Matter 28, 064001 (2016).

    Google Scholar 

  42. P. Lejček, L. Zheng, S. Hofmann, and M. Šob: Applied thermodynamics: Grain boundary segregation. Entropy 16, 1462 (2014).

    Article  CAS  Google Scholar 

  43. P. Lejček, A. Jäger, and V. Gärtnerová: Reversed anisotropy of grain boundary properties and its effect on grain boundary engineering. Acta Mater. 58, 1930 (2010).

    Article  CAS  Google Scholar 

  44. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater. 61, 6152 (2013).

    Article  CAS  Google Scholar 

  45. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.P. Choi: Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).

    Article  CAS  Google Scholar 

  46. M. Kuzmina, D. Ponge, and D. Raabe: Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt% medium Mn steel. Acta Mater. 86, 182 (2015).

    Article  CAS  Google Scholar 

  47. P.R. Cantwell, S.T. Ming, J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer: Grain boundary complexions. Acta Mater. 62, 1 (2014).

    Article  CAS  Google Scholar 

  48. S.J. Dillon, K. Tai, and S. Chen: The importance of grain boundary complexions in affecting physical properties of polycrystals. Curr. Opin. Solid State Mater. Sci. 20, 324 (2016).

    Article  CAS  Google Scholar 

  49. A. Kundu, K.M. Asl, J. Luo, and M.P. Harmer: Identification a bilayer grain boundary complexion in Bi-doped Cu. Scr. Mater. 68, 146 (2013).

    Article  CAS  Google Scholar 

  50. A. Tewari and P. Bowen: Grain boundary complexion and transparent polycrystalline alumina from an atomistic simulation perspective. Curr. Opin. Solid State Mater. Sci. 20, 278 (2016).

    Article  CAS  Google Scholar 

  51. T. Xu, L. Zheng, K. Wang, and R.D.K. Misra: Unified mechanism of intergranular embrittlement based on non-equilibrium grain boundary segregation. Int. Mater. Rev. 58, 263 (2013).

    Article  CAS  Google Scholar 

  52. L. Zheng, R. Chellali, R. Schlessinger, Y. Meng, D. Baither, and G. Schmitz: Identical mechanism of isochronal embrittlement in Ni(Bi) alloy: Thermo-induced non-equilibrium grain boundary segregation of Bi. Appl. Surf. Sci. 337, 90 (2015).

    Article  CAS  Google Scholar 

  53. Z. Liu, H. Yu, K. Wang, and T. Xu: Non-equilibrium grain-boundary segregation mechanism of hot ductility loss for austenitic and ferritic stainless steels. J. Mater. Res. 30, 2117 (2015).

    Article  CAS  Google Scholar 

  54. S.H. Song, Y. Zhao, and H. Si: Non-equilibrium phosphorus grain-boundary segregation and its effect on embrittlement in a niobium-stabilized interstitial-free steel. Mater. Lett. 140, 20 (2015).

    Article  CAS  Google Scholar 

  55. H.B. Lee, F.B. Prinz, and W. Cai: Atomistic simulations of grain boundary segregatiom in nanocrystalline yttria-stabilized zirconia and gadolinia-doped ceria solid oxide electrolytes. Acta Mater. 61, 3872 (2013).

    Article  CAS  Google Scholar 

  56. T. Yokoi, M. Yoshiya, and H. Yasuda: Nonrandom point defect configurations and driving force transitions for grain boundary segregation in trivalent cation doped ZrO2. Langmuir 30, 14179 (2014).

    Article  CAS  Google Scholar 

  57. F. Zhang, K. Vanmeensel, M. Batuk, J. Hadermann, M. Inokoshi, B. Van Meerbeek, I. Naeret, and J. Vleugels: Highly-translucent, strong and aging resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater. 16, 215 (2015).

    Article  CAS  Google Scholar 

  58. T. Yokoi, M. Yoshiya, and H. Yasuda: On modeling of grain boundary segregation in aliovalent cation-doped ZrO2: Critical factors in site-selective point defect occupancy. Scr. Mater. 102, 91 (2015).

    Article  CAS  Google Scholar 

  59. F. Zhang, M. Batuk, J. Hadermann, G. Manfredi, A. Mariën, K. Vanmeensel, M. Inokoshi, B. Van Meerbeek, I. Naert, and J. Vleugels: Effect of cation-dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation. Acta Mater. 106, 48 (2016).

    Article  CAS  Google Scholar 

  60. B. Feng, T. Yokoi, A. Kumamoto, M. Ikuhara, and N. Shibata: Atomically ordered solute segregation behavior in an oxide grain boundary. Nat. Commun. 7, 11079 (2016).

    Article  CAS  Google Scholar 

  61. S. Ma, P.R. Cantwell, T.J. Pennycock, N. Zhou, M.P. Oxley, D.N. Leonard, S.J. Pennycook, J. Luo, and M.P. Harmer: Grain boundary complexion transitions in WO3- and CuO-doped TiO2 bicrystals. Acta Mater. 61, 1691 (2013).

    Article  CAS  Google Scholar 

  62. J.K. Yan, K.Y. Kang, and G.Y. Gan: Grain boundary segregation and the formation mechanism of secondary-phase in (Ce,Nb)-codoped TiO2 ceramics. Mater. Des. 99, 155 (2016).

    Article  CAS  Google Scholar 

  63. J.K. Yan, K.Y. Kang, J.H. Du, G.Y. Gan, and J.H. Yi: Grain boundary segregation and secondary-phase transition of (La,Nb) codoped TiO2 ceramic. Ceram. Int. 42, 11584 (2016).

    Article  CAS  Google Scholar 

  64. B. Meng, Z.L. Lin, Y.J. Zhou, Q.Q. Yang, M. Kong, and B.F. Meng: Effects of Fe-dopings through solid solution and grain-boundary segregation on the electrical properties of CeO2-based solid electrolytes. Ionics 21, 2575 (2015).

    Article  CAS  Google Scholar 

  65. D.A. Andersson, M.R. Tonks, L. Casillas, S. Vyas, P. Nerikar, B.P. Ubruaga, and C.R. Stanek: Multiscale simulation of xenon diffusion and grain boundary segregation in UO2. J. Nucl. Mater. 462, 15 (2015).

    Article  CAS  Google Scholar 

  66. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Goering, G. Schütz, P.B. Straumal, and B. Baretzky: Ferromagnetic behavior of ZnO: The role of grain boundaries. Beilstein J. Nanotechnol. 7, 1936 (2016).

    Article  CAS  Google Scholar 

  67. A. Stoffers, O. Cojocaru-Mirédin, W. Seifert, S. Zaefferer, S. Riepe, and D. Raabe: Grain boundary segregation in multicrystalline silicon: Correlative characterization by EBSD, EBIC, and atom probe tomography. Prog. Photovoltaics Res. Appl. 23, 1742 (2015).

    Article  CAS  Google Scholar 

  68. R.A. Mondal, B.S. Murty, and V.R.K. Murthy: Maxwell-Wagner polarization in grain boundary segregated NiCuZn ferrite. Curr. Appl. Phys. 14, 1727 (2014).

    Article  Google Scholar 

  69. R.A. Mondal, B.S. Murty, and V.R.K. Murthy: Temperature and frequency dependent electrical properties of NiCuZn ferrite with CuO-rich grain boundary segregation. J. Alloy. Comp. 595, 206 (2014).

    Article  CAS  Google Scholar 

  70. R.A. Mondal, B.S. Murty, and V.R.K. Murthy: Origin of magnetocapacitance in chemically homogeneous and inhomogeneous ferrites. Phys. Chem. Chem. Phys. 17, 2432 (2015).

    Article  CAS  Google Scholar 

  71. H.I. Yoon, D.K. Lee, H.B. Bae, G.Y. Jo, H.S. Chung, J.G. Kim, S.J. Kang, and S.Y. Chung: Probing dopant segregation in distinct cation sites at perovskite oxide polycrystal interfaces. Nat. Commun. 8, 1417 (2017).

    Article  CAS  Google Scholar 

  72. W. Cao, A. Kundu, Z. Yu, M.P. Harmer, and R.P. Vinci: Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel. Scr. Mater. 69, 81 (2013).

    Article  CAS  Google Scholar 

  73. P. Zachariasz, J. Kulawik, and P. Gudzek: Preparation and characterization of the microstructure, dielectric and magnetoelectric properties of multiferroic Sr3CuNb2O9–CoFe2O4 ceramics. Mater. Des. 86, 627 (2015).

    Article  CAS  Google Scholar 

  74. C. Boyle, P. Carvillo, Y. Chen, E.J. Barbero, D. Mcintyre, and X. Song: Grain boundary segregation and thermoelectric performance enhancement of bismuth doped calcium cobaltite. J. Eur. Ceram. Soc. 36, 601 (2016).

    Article  CAS  Google Scholar 

  75. T. Nagano, K. Tamahashi, Y. Sasajima, and J. Onuki: Cs corrected STEM observation and atomic modeling of grain boundary impurities of very narrow Cu interconnect. ECS Electrochem. Lett. 2, H23 (2013).

    Article  CAS  Google Scholar 

  76. Z. Yu, Q. Wu, J.M. Rickman, H.M. Chan, and M.P. Harmer: Atomic resolution observation of Hf doped alumina grain boundaries. Scr. Mater. 68, 703 (2013).

    Article  CAS  Google Scholar 

  77. T. Walther, M. Hopkinson, N. Daneau, A. Recnik, Y. Ohno, K. Inoue, and I. Yonenaga: How to best measure atomic segregation to grain boundaries by analytical transmission electron microscopy. J. Mater. Sci. 49, 3898 (2014).

    Article  CAS  Google Scholar 

  78. K. Babinsky, J. Weidow, W. Knabl, A. Lorich, H. Leitner, and S. Primig: Atom probe study of grain boundary segregation in technically pure molybdenum. Mater. Charact. 87, 95 (2014).

    Article  CAS  Google Scholar 

  79. M.J.R. Sandim, D. Tytko, A. Kostka, P. Choi, S. Awaji, K. Watanabe, and D. Raabe: Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography. Supercond. Sci. Technol. 26, 05508 (2013).

    Article  CAS  Google Scholar 

  80. Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim: Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing. Ultramicroscopy 132, 233 (2013).

    Article  CAS  Google Scholar 

  81. Y.J. Li, D. Ponge, P. Choi, and D. Raabe: Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Scr. Mater. 96, 13 (2015).

    Article  CAS  Google Scholar 

  82. M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaeferer, and S. Goto: Atomic scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2013).

    Article  CAS  Google Scholar 

  83. S. Mandal, K.G. Pradeep, S. Zaefferer, and D. Raabe: A novel approach to measure grain boundary segregation in bulk polycrystalline materials in dependence of the boundaries’ five rotational degrees of freedom. Scr. Mater. 81, 16 (2014).

    Article  CAS  Google Scholar 

  84. K.N. Solanki, M.A. Tschopp, M.A. Bhatia, and N.R. Rhodes: Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-iron. Metall. Mater. Trans. A 44, 1365 (2013).

    Article  CAS  Google Scholar 

  85. N.R. Rhodes, M.A. Tschopp, and K.N. Solanki: Quantifying the energetics and length scales of carbon segregation to α-Fe symmetric tilt grain boundaries using atomistic simulations. Modell. Simul. Mater. Sci. Eng. 21, 035009 (2013).

    Article  CAS  Google Scholar 

  86. C.X. Li, S.H. Dang, L.P. Wang, C.L. Zhang, and P.D. Han: First principles investigation into effects of Cr on segregation of S and Cl at α-Fe Σ5(210) grain boundary. Mater. Res. Innovations 18, S41012 (2014).

    Article  CAS  Google Scholar 

  87. H. Jin, I. Elfimov, and M. Militzer: Study of the interaction of solutes with Σ5(013) tilt grain boundary in iron using density-functional theory. J. Appl. Phys. 115, 093506 (2014).

    Article  CAS  Google Scholar 

  88. A.M. Tahir, R. Janisch, and A. Hartmaier: Hydrogen embrittlement of a carbon segregated Σ5 (310) [001] symmetrical tilt grain boundary in α-Fe. Mater. Sci. Eng., A 612, 462 (2014).

    Article  CAS  Google Scholar 

  89. S.K. Bhattacharya, M. Kohyama, S. Tanaka, and Y. Shiihara: Si segregation at Fe grain boundaries analyzed by ab initio local energy and local stress. J. Phys.: Condens. Matter 26, 355005 (2014).

    Google Scholar 

  90. T. Suzudo and M. Yamaguchi: Simulation of He embrittlement at grain boundaries in bcc transition metals. J. Nucl. Mater. 465, 695 (2015).

    Article  CAS  Google Scholar 

  91. M.R. Zemła, J.S. Wróbel, T. Wejrzanowski, D. Nguyen-Manh, and K.J. Kurzydłowski: The helium effect at grain boundaries in Fe–Cr alloys? A first-principles study. Nucl. Instrum. Methods Phys. Res., Sect. B 393, 118 (2017).

    Article  CAS  Google Scholar 

  92. E.L.T. Bentria, I.K. Lefkaier, and B. Bentria: The effect of vanadium impurity on nickel Σ5(210) grain boundary. Mater. Sci. Eng., A 577, 197 (2013).

    Article  CAS  Google Scholar 

  93. V.I. Razumovskiy, A.Y. Lozovoi, and I.M. Razumovskii: First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater. 82, 369 (2015).

    Article  CAS  Google Scholar 

  94. A.V. Subashiev and H.H. Nee: Hydrogen trapping at divacancies and impurity-vacancy complexes in nickel: First principles study. J. Nucl. Mater. 487, 135 (2017).

    Article  CAS  Google Scholar 

  95. N.K. Das, T. Shoji, T. Nishizumi, T. Fukuoka, T. Sugawara, R. Sasaki, T. Tatsuki, H. Yuya, K. Ito, K. Tatsumi, S. Ooki, Y. Sueishi, and K. Takada: First-principles calculations of hydrogen interactions with nickel containing a monovacancy and divacancies. Mater. Res. Express 4, 076505 (2017).

    Article  CAS  Google Scholar 

  96. S. Divi, G. Agrahari, S.R. Kadulkar, S. Kumar, and A. Chatterjee: Improved prediction of heat of mixing and segregation in metallic alloys using tunable mixing rule for embedded atom method. Modell. Simul. Mater. Sci. Eng. 25, 085011 (2017).

    Article  Google Scholar 

  97. M. Všianská, H. Vémolová, and M. Šob: Segregation of sp-impurities at grain boundaries and surfaces: Comparison of fcc cobalt and nickel. Modell. Simul. Mater. Sci. Eng. 25, 085004 (2017).

    Article  Google Scholar 

  98. M. Rajagopalan, M.A. Bhatia, K.N. Solanki, and M.A. Tschopp: Investigation of atomic-scale energetics on liquid metal embrittlement of aluminum due to gallium. TMS Ann. Meet. 2014, 1069 (2014).

    Google Scholar 

  99. X.J. Shen, D. Tanguy, and D. Connétable: Atomistic modelling of hydrogen segregation to the Σ9 (221) [110] symmetric tilt grain boundary in Al. Philos. Mag. 94, 2247 (2014).

    Article  CAS  Google Scholar 

  100. H. Wang, M. Kohyama, S. Tanaka, and Y. Shiihara: First-principles study of Si and Mg segregation in grain boundaries in Al and Cu: Application of local-energy decomposition. J. Mater. Sci. 50, 6864 (2015).

    Article  CAS  Google Scholar 

  101. L.E. Karkina, I.N. Karkin, A.R. Kuzetsov, I.K. Razumov, P.A. Korzhavyi, and Y.N. Gornostyrev: Solute-grain boundary interaction and segregation formation in Al: First principles calculations and molecular dynamics modeling. Comput. Mater. Sci. 112, 18 (2016).

    Article  CAS  Google Scholar 

  102. L. Huber, B. Grabowski, M. Militzer, J. Neugebauer, and J. Rottler: Ab initio modelling of solute segregation energies to a general grain boundary. Acta Mater. 132, 138 (2017).

    Article  CAS  Google Scholar 

  103. D. Scheiber, R. Pippan, P. Puschnig, A. Ruban, and L. Romaner: Ab initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten. Int. J. Refract. Met. Hard Mater. 60, 75 (2016).

    Article  CAS  Google Scholar 

  104. D. Scheiber, R. Pippan, P. Puschnig, and L. Romaner: Ab-initio search for cohesion-enhancing impurity elements at grain boundaries in molybdenum and tungsten. Modell. Simul. Mater. Sci. Eng. 24, 085009 (2016).

    Article  CAS  Google Scholar 

  105. N. Chen, L.L. Niu, Y. Zhang, X. Shu, H.B. Zhou, S. Jin, G. Ran, G.H. Lu, and F. Gao: Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten. Sci. Rep. 6, 36955 (2014).

    Article  CAS  Google Scholar 

  106. J. Chai, Y.H. Li, L.L. Niu, S.Y. Qin, H.B. Zhou, J. Shuo, Y. Zhang, and G.H. Lu: First-principles investigation of the energetics of point defects at a grain boundary of tungsten. Nucl. Instrum. Methods Phys. Res., Sect. B 393, 144 (2017).

    Article  CAS  Google Scholar 

  107. X.X. Wang, L.L. Niu, and S. Wang: Strong trapping and slow diffusion of helium in a tungsten grain boundary. J. Nucl. Mater. 487, 158 (2017).

    Article  CAS  Google Scholar 

  108. L. Sun, S. Jin, H.B. Zhou, Y. Zhang, and G.Y. Lu: Dissolution and diffusion of hydrogen in a molybdenum grain boundary: A first-principles investigation. Comput. Mater. Sci. 102, 243 (2015).

    Article  CAS  Google Scholar 

  109. O. Lenchuk, J. Rohrer, and K. Albe: Atomistic modelling of zirconium and silicon segregation at twist and tilt grain boundaries in molybdenum. J. Mater. Sci. 51, 1873 (2016).

    Article  CAS  Google Scholar 

  110. A. Lindman, E.E. Helgee, B.J. Nyman, and G. Wahnström: Oxygen vacancy segregation in grain boundaries of BaZrO3 using interatomic potentials. Solid State Ionics 230, 27 (2013).

    Article  CAS  Google Scholar 

  111. E.E. Helgee, A. Lindman, and G. Wahnström: Origin space charge in grain boundaries of proton conducting BaZrO3. Fuel Cells 13, 19 (2013).

    Article  CAS  Google Scholar 

  112. A. Lindman, E.E. Helgee, and G. Wahnström: Theoretical modeling of defect segregation and space charge formation in the BaZrO3 (210)[001] tilt grain boundary. Solid State Ionics 252, 121 (2013).

    Article  CAS  Google Scholar 

  113. J.H. Yang, B.K. Kim, and Y.C. Kim: Calculations of proton conductivity at the Σ3(111)\(\left[{1\bar{1}0} \right]\) tilt grain boundary of barium zirconate using density functional theory. Solid State Ionics 279, 60 (2015).

    Article  CAS  Google Scholar 

  114. J.S. Kim and Y.C. Kim: Proton conduction in nonstoichiometric Σ3 BaZrO3 (210)[001] tilt grain boundary using density functional theory. J. Korean Ceram. Soc. 53, 301 (2017).

    Article  CAS  Google Scholar 

  115. A. Lindman, T.S. Bjørheim, and G. Wahnström: Defect segregation to grain boundaries in BaZrO3 from first principles free energy calculations. J. Mater. Chem. A 5, 13421 (2017).

    Article  CAS  Google Scholar 

  116. M. Všianská and M. Šob: The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mater. Sci. 56, 817 (2011).

    Article  CAS  Google Scholar 

  117. P. Lejček and S. Hofmann: Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction. Crit. Rev. Solid State Mater. Sci. 33, 133 (2008).

    Article  CAS  Google Scholar 

  118. P. Lejček, M. Šob, V. Paidar, and V. Vitek: Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low. Scr. Mater. 68, 547 (2013).

    Article  CAS  Google Scholar 

  119. P. Rez and J.R. Alvarez: Calculation of cohesion and changes in electronic structure due to impurity segregation at boundaries in iron. Acta Mater. 47, 4069 (1999).

    Article  CAS  Google Scholar 

  120. M. Yuasa and M. Mabuchi: Bond mobility mechanism in grain boundary embrittlement: First-principles tensile tests of Fe with a P-segregated Σ3 grain boundary. Phys. Rev. B 82, 094108 (2010).

    Article  CAS  Google Scholar 

  121. M. Yuasa and M. Mabuchi: First-principles study on enhanced grain boundary embrittlement of iron by phosphorus segregation. Mater. Trans. 52, 1369 (2011).

    Article  CAS  Google Scholar 

  122. R. Wu, A.J. Freeman, and G.B. Olson: First principles determination of phosphorus and boron on iron grain boundary cohesion. Science 265, 376 (1994).

    Article  CAS  Google Scholar 

  123. Y.Q. Fen and C.Y. Wang: Electronic effects of nitrogen and phosphorus on iron grain boundary cohesion. Comput. Mater. Sci. 20, 48 (2001).

    Article  CAS  Google Scholar 

  124. M. Yamaguchi: First-principles study on the grain boundary embrittlement of metals by solute segregation: Part I. Iron (Fe)-solute (B, C, P, and S) systems. Metall. Mater. Trans. A 42, 319 (2011).

    Article  CAS  Google Scholar 

  125. M. Yamaguchi: First-principles calculations of the grain-boundary cohesive energy—Embrittling or strengthening effect of solute segregation in a bcc FeΣ3(111) grain boundary. J. Japan Inst. Met. 72, 657 (2008).

    Article  CAS  Google Scholar 

  126. M. Rajagopalan, M.A. Tschopp, and K.N. Solanki: Grain boundary segregation of interstitial and substitutional impurity atoms in alpha-iron. JOM 66, 129 (2014).

    Article  CAS  Google Scholar 

  127. W.S. Ko, J.B. Jeon, C.H. Lee, J.K. Lee, and B.J. Lee: Intergranular embrittlement of iron by phosphorus segregation: An atomistic simulation. Modell. Simul. Mater. Sci. Eng. 21, 025012 (2013).

    Article  CAS  Google Scholar 

  128. S. Braithwaite and P. Rez: Grain boundary impurities in iron. Acta Mater. 53, 2715 (2005).

    Article  CAS  Google Scholar 

  129. E. Wachowicz and A. Kiejna: Effect of impurities on structural, cohesive and magnetic properties of grain boundaries in α-Fe. Modell. Simul. Mater. Sci. Eng. 19, 025001 (2011).

    Article  CAS  Google Scholar 

  130. M. Všianská and M. Šob: to be published.

  131. W.S. Ko, N.J. Kim, and B.J. Lee: Atomistic modeling of an impurity element and metal-impurity system: pure P and Fe–P system. J. Phys.: Condens. Matter 24, 225002 (2012).

    Google Scholar 

  132. P. Lejček, S. Hofmann, and J. Janovec: Prediction of enthalpy and entropy of solute segregation at individual grain boundaries of α-iron and ferrite steels. Mater. Sci. Eng., A 462, 76 (2007).

    Article  CAS  Google Scholar 

  133. H. Erhart and H.J. Grabke: Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys. Met. Sci. 15, 401 (1981).

    Article  CAS  Google Scholar 

  134. Y. Zhang, W.Q. Feng, Y.L. Liu, G.H. Lu, and T. Wang: First-principles study of helium effect in a ferromagnetic iron grain boundary: Energetics, site preference and segregation. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3200 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Czech Science Foundation [Projects Nos. GB P108/12/G043 (PL) and GA 16-24711S (MŠ, MV)], by the Academy of Sciences of the Czech Republic [Institutional Projects RVO:68378271 (PL) and RVO:68081723 (MŠ, MV)], and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) (MŠ, MV). Computational resources were provided by the Ministry of Education, Youth and Sports of the Czech Republic under the Projects CESNET (Project No. LM2015042), CERIT-Scientific Cloud (Project No. LM2015085), and IT4Innovations National Supercomputer Center (Project No. LM2015070) within the program Projects of Large Research, Development and Innovations Infrastructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Lejček.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lejček, P., Všianská, M. & Šob, M. Recent trends and open questions in grain boundary segregation. Journal of Materials Research 33, 2647–2660 (2018). https://doi.org/10.1557/jmr.2018.230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.230

Navigation