Skip to main content
Log in

A Novel Solution to the P4P Problem for an Uncalibrated Camera

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a novel solution for the absolute camera pose and the camera calibration (effective focal length and aspect ratio) based on perspective four point (P4P) problem. By converting perspective transformation to affine transformation and using invariance to 3D affine transformation, we explore the relationship between the dual image of the absolute conic (DIAC) and the world coordinate of camera optical center and show how the coplanar and noncoplanar cases are cast into the problems of solving a quadratic polynomial equation and an eighth degree polynomial equation in a single variable respectively using only linear algebra. In particular, geometric configurations for infinite solutions of the coplanar case are explored. We also confirm the conclusion that the upper bound of eight real solutions for noncoplanar case is attainable by an example. The performance and usefulness of our novel solution are demonstrated by thorough testing on both synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fishler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  Google Scholar 

  2. Horaud, R., Conio, B., Leboulleux, O.: An analytic solution for the perspective 4-point problem. Comput. Vis. Graph. Image Process. 47, 33–44 (1989)

    Article  Google Scholar 

  3. Wu, Y.H., Hu, Z.Y.: PnP problem revisited. J. Math. Imaging Vis. 24(1), 131–141 (2006)

    Article  MathSciNet  Google Scholar 

  4. Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proc. ASP/UI Symp. Close-Range Photogrammetry, pp. 1–18 (1971)

    Google Scholar 

  5. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  6. Abidi, M.A., Chandra, T.: A new efficient and direct solution for pose estimation using quadrangular targets: algorithm and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 534–538 (1995)

    Article  Google Scholar 

  7. Triggs, B.: Camera pose and calibration from 4 or 5 known 3D points. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, pp. 278–284 (1999)

    Chapter  Google Scholar 

  8. Hu, Z.Y., Lei, C., Wu, F.C.: A short note on P4P problem. Acta Autom. Sin. 27(6), 770–776 (2001)

    MathSciNet  Google Scholar 

  9. Wu, F.C., Hu, Z.Y.: A note on the P5P problem with an uncalibrated camera. Chin. J. Comput. 24(11), 1321–1326 (2001)

    Google Scholar 

  10. Guo, Y., Xu, X.H.: An analytic solution for the P5P problem with an uncalibrated camera. Chin. J. Comput. 30(7), 1195–1200 (2007)

    MathSciNet  Google Scholar 

  11. Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the P4P problem for camera with unknown focal length. In: Proc. Conf. Computer Vision and Pattern Recognition, Anchorage, USA, pp. 1–8 (2008)

    Google Scholar 

  12. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (2007)

    Book  MATH  Google Scholar 

  13. Josephson, K., Byröd, M.: Pose estimation with radial distortion and unknown focal length. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 2419–2426 (2009)

    Chapter  Google Scholar 

  14. Bujnak, M., Kukelova, Z., Pajdla, T.: New efficient solution to the absolute pose problem for camera with unknown focal length and radial distortion. In: The Tenth Asian Conference on Computer Vision, Queenstown, New Zealand, pp. 11–24 (2010)

    Google Scholar 

  15. Fulton, W.: Intersection Theory. Springer, Berlin (1984)

    MATH  Google Scholar 

  16. Mignotte, M.: Mathematics for Computer Algebra. Springer, New York (1992)

    Book  MATH  Google Scholar 

  17. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  18. Roth, B.: Computations in kinematics. In: Angeles, J., et al. (eds.) Computational Kinematics, pp. 3–14. Kluwer, Dordrecht (1993)

    Google Scholar 

  19. Gao, X.S., Tang, J.L.: On the probability of the number of solutions for the P4P problem. J. Math. Imaging Vis. 25(1), 79–86 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hu, Z.Y., Wu, F.C.: A note on the number of solutions of the noncoplanar P4P problem. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 550–555 (2002)

    Article  MathSciNet  Google Scholar 

  21. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)

    Article  Google Scholar 

  22. Tang, J.L., Chen, W.S., Wang, J.: A novel linear algorithm for P5P problem. Appl. Math. Comput. 205(2), 628–634 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reid, G., Tang, J.L., Zhi, L.H.: A complete symbolic-numeric linear method for camera pose determination. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 215–223 (2003)

    Chapter  Google Scholar 

  24. Hartley, R., Li, H.D.: An efficient hidden variable approach to minimal-case camera motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. (2012). doi:10.1109/TPAMI.2012.43

  25. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to minimal problems in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. (2011). doi:10.1109/TPAMI.2011.230

Download references

Acknowledgements

The author thanks the anonymous referees for valuable suggestions. This work was supported by the Fundamental Research Funds for the Central Universities under grant No. N100405012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y. A Novel Solution to the P4P Problem for an Uncalibrated Camera. J Math Imaging Vis 45, 186–198 (2013). https://doi.org/10.1007/s10851-012-0360-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0360-0

Keywords

Navigation