Skip to main content

Advertisement

Log in

The role of heparins and nano-heparins as therapeutic tool in breast cancer

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

(EGFR):

epidermal growth factor receptor

(FGFR):

fibroblast growth factor receptor

(GAGs):

glycosaminoglycans

(HS):

heparan sulfate

(HSPGs):

heparan sulfate proteoglycans

(HER-2):

human epidermal growth factor receptor 2

(IGF-1R):

insulin-like growth factor receptor 1

(LMWH):

low molecular weight heparin

(LHT7):

LMWH-taurocholate conjugates

(LHT7-SAHA):

LHT7-suberoylanilide hydroxamic acid

(PGs):

proteoglycans

(LHTD4):

tetrameric deoxycholic acid

(UFH):

unfractionated heparin

(VEGFR):

vascular endothelial growth factor receptor

References

  1. Afratis, N., Gialeli, C., Nikitovic, D., Tsegenidis, T., Karousou, E., Theocharis, A.D., Pavao, M.S., Tzanakakis, G.N., Karamanos, N.K.: Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 279(7), 1177–1197 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Karamanos, N.K., Vanky, P., Tzanakakis, G.N., Tsegenidis, T., Hjerpe, A.: Ion-pair high-performance liquid chromatography for determining disaccharide composition in heparin and heparan sulphate. J. Chromatogr. A 765(2), 169–179 (1997)

    Article  PubMed  Google Scholar 

  3. Malavaki, C.J., Theocharis, A.D., Lamari, F.N., Kanakis, I., Tsegenidis, T., Tzanakakis, G.N., Karamanos, N.K.: Heparan sulfate: biological significance, tools for biochemical analysis and structural characterization. Biomed. Chromatogr. 25(1–2), 11–20 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. Militsopoulou, M., Lamari, F.N., Hjerpe, A., Karamanos, N.K.: Determination of twelve heparin- and heparan sulfate-derived disaccharides as 2-aminoacridone derivatives by capillary zone electrophoresis using ultraviolet and laser-induced fluorescence detection. Electrophoresis 23(7–8), 1104–1109 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Sarrazin, S., Lamanna, W.C., Esko, J.D.: Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3 (7) (2011).

  6. Korpetinou, A., Skandalis, S.S., Labropoulou, V.T., Smirlaki, G., Noulas, A., Karamanos, N.K., Theocharis, A.D.: Serglycin: at the crossroad of inflammation and malignancy. Front. Oncol. 3, 327 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Theocharis, A.D., Skandalis, S.S., Tzanakakis, G.N., Karamanos, N.K.: Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 277(19), 3904–3923 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Theocharis, A.D., Gialeli, C., Bouris, P., Giannopoulou, E., Skandalis, S.S., Aletras, A.J., Iozzo, R.V., Karamanos, N.K.: Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J. 281(22), 5023–5042 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Theocharis, A.D., Skandalis, S.S., Neill, T., Multhaupt, H.A., Hubo, M., Frey, H., Gopal, S., Gomes, A., Afratis, N., Lim, H.C., Couchman, J.R., Filmus, J., Sanderson, R.D., Schaefer, L., Iozzo, R.V., Karamanos, N.K.: Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim. Biophys. Acta 1855(2), 276–300 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Peysselon, F., Ricard-Blum, S.: Heparin-protein interactions: from affinity and kinetics to biological roles application to an interaction network regulating angiogenesis. Matrix Biol J Int Soc Matrix Biol 35, 73–81 (2014)

    Article  CAS  Google Scholar 

  11. Abrink, M., Grujic, M., Pejler, G.: Serglycin is essential for maturation of mast cell secretory granule. J. Biol. Chem. 279(39), 40897–40905 (2004)

    Article  PubMed  Google Scholar 

  12. Mulloy, B., Hogwood, J., Gray, E., Lever, R., Page, C.P.: Pharmacology of heparin and related drugs. Pharmacol. Rev. 68(1), 76–141 (2016)

    Article  PubMed  Google Scholar 

  13. Linhardt, R.J., Claude, S.: Hudson award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 46(13), 2551–2564 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Belmiro, C.L., Castelo-Branco, M.T., Melim, L.M., Schanaider, A., Elia, C., Madi, K., Pavao, M.S., de Souza, H.S.: Unfractionated heparin and new heparin analogues from ascidians (chordate-tunicate) ameliorate colitis in rats. J. Biol. Chem. 284(17), 11267–11278 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardilo-Reis, L., Cavalcante, M.C., Silveira, C.B., Pavao, M.S.: In vivo antithrombotic properties of a heparin from the oocyte test cells of the sea squirt Styela plicata(Chordata-Tunicata). Braz. J. Med. Biol. Res. 39(11), 1409–1415 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Hetzel, G.R., Sucker, C.: The heparins: all a nephrologist should know. Nephrol. Dial. Transplant. Eur. Dial. Transplant. Assoc. Eur. Ren. Assoc. 20(10), 2036–2042 (2005)

    Article  Google Scholar 

  17. Kemp, M.M., Linhardt, R.J.: Heparin-based nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1), 77–87 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Iozzo, R.V., Sanderson, R.D.: Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med. 15(5), 1013–1031 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iozzo, R.V., Schaefer, L.: Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol J Int Soc Matrix Biol 42, 11–55 (2015)

    Article  CAS  Google Scholar 

  20. Theocharis, A.D., Skandalis, S.S., Gialeli, C., Karamanos, N.K.: Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. Bouris, P., Skandalis, S.S., Piperigkou, Z., Afratis, N., Karamanou, K., Aletras, A.J., Moustakas, A., Theocharis, A.D., Karamanos, N.K.: Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol J Int Soc Matrix Biol 43, 42–60 (2015)

    Article  CAS  Google Scholar 

  22. Piperigkou, Z., Bouris, P., Onisto, M., Franchi, M., Kletsas, D., Theocharis, A.D., Karamanos, N.K.: Estrogen receptor beta modulates breast cancer cells functional properties, signaling and expression of matrix molecules. Matrix biology : journal of the International Society for Matrix Biology (2016).

  23. Baba, F., Swartz, K., van Buren, R., Eickhoff, J., Zhang, Y., Wolberg, W., Friedl, A.: Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype. Breast Cancer Res. Treat. 98(1), 91–98 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Lendorf, M.E., Manon-Jensen, T., Kronqvist, P., Multhaupt, H.A., Couchman, J.R.: Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma. J. Histochem. Cytochem Off J Histochem Soc 59(6), 615–629 (2011)

    Article  CAS  Google Scholar 

  25. Lim, H.C., Couchman, J.R.: Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases. Biochim. Biophys. Acta 1840(8), 2482–2490 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. Beauvais, D.M., Rapraeger, A.C.: Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J. Cell Sci. 123(Pt 21), 3796–3807 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, H., Jin, H., Rapraeger, A.C.: Syndecan-1 and syndecan-4 capture epidermal growth factor receptor family members and the alpha3beta1 integrin Via binding sites in their eCTODOMAINS: novel synstatins prevent kinase capture and inhibit alpha6beta4-integrin-dependent epithelial cell motility. J. Biol. Chem. 290(43), 26103–26113 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suarez, E.R., Paredes-Gamero, E.J., Del Giglio, A., Tersariol, I.L., Nader, H.B., Pinhal, M.A.: Heparan sulfate mediates trastuzumab effect in breast cancer cells. BMC Cancer 13, 444 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miralem, T., Steinberg, R., Price, D., Avraham, H.: VEGF(165) requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells. Oncogene 20(39), 5511–5524 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Matsuda, K., Maruyama, H., Guo, F., Kleeff, J., Itakura, J., Matsumoto, Y., Lander, A.D., Korc, M.: Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. 61(14), 5562–5569 (2001)

    CAS  PubMed  Google Scholar 

  31. Ding, K., Lopez-Burks, M., Sanchez-Duran, J.A., Korc, M., Lander, A.D.: Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J. Cell Biol. 171(4), 729–738 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yiu, G.K., Kaunisto, A., Chin, Y.R., Toker, A.: NFAT promotes carcinoma invasive migration through glypican-6. Biochem. J 440(1), 157–166 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiang, Y.Y., Ladeda, V., Filmus, J.: Glypican-3 expression is silenced in human breast cancer. Oncogene 20(50), 7408–7412 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Peters, M.G., Farias, E., Colombo, L., Filmus, J., Puricelli, L., Bal de Kier Joffe, E.: Inhibition of invasion and metastasis by glypican-3 in a syngeneic breast cancer model. Breast Cancer Res. Treat. 80(2), 221–232 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Stigliano, I., Puricelli, L., Filmus, J., Sogayar, M.C., Bal de Kier Joffe, E., Peters, M.G.: Glypican-3 regulates migration, adhesion and actin cytoskeleton organization in mammary tumor cells through Wnt signaling modulation. Breast Cancer Res. Treat. 114(2), 251–262 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Buchanan, C., Stigliano, I., Garay-Malpartida, H.M., Rodrigues Gomes, L., Puricelli, L., Sogayar, M.C., Bal de Kier Joffe, E., Peters, M.G.: Glypican-3 reexpression regulates apoptosis in murine adenocarcinoma mammary cells modulating PI3K/Akt and p38MAPK signaling pathways. Breast Cancer Res. Treat. 119(3), 559–574 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. Gomes, A.M., Kozlowski, E.O., Borsig, L., Teixeira, F.C., Vlodavsky, I., Pavao, M.S.: Antitumor properties of a new non-anticoagulant heparin analog from the mollusk nodipecten nodosus: effect on P-selectin, heparanase, metastasis and cellular recruitment. Glycobiology 25(4), 386–393 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. Kozlowski, E.O., Pavao, M.S.: Effect of sulfated glycosaminoglycans on tumor invasion and metastasis. Front Biosci (Schol Ed) 3, 1541–1551 (2011)

    Article  Google Scholar 

  39. Niers, T.M., Klerk, C.P., DiNisio, M., Van Noorden, C.J., Buller, H.R., Reitsma, P.H., Richel, D.J.: Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit. Rev. Oncol. Hematol. 61(3), 195–207 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Mizumoto, S., Takahashi, J., Sugahara, K.: Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells. J. Biol. Chem. 287(23), 18985–18994 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lapierre, F., Holme, K., Lam, L., Tressler, R.J., Storm, N., Wee, J., Stack, R.J., Castellot, J., Tyrrell, D.J.: Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiology 6(3), 355–366 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. Borsig, L., Vlodavsky, I., Ishai-Michaeli, R., Torri, G., Vismara, E.: Sulfated hexasaccharides attenuate metastasis by inhibition of P-selectin and heparanase. Neoplasia 13(5), 445–452 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ritchie, J.P., Ramani, V.C., Ren, Y., Naggi, A., Torri, G., Casu, B., Penco, S., Pisano, C., Carminati, P., Tortoreto, M., Zunino, F., Vlodavsky, I., Sanderson, R.D., Yang, Y.: SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin. Cancer Res. 17(6), 1382–1393 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, H., Roy, S., Cochran, E., Zouaoui, R., Chu, C.L., Duffner, J., Zhao, G., Smith, S., Galcheva-Gargova, Z., Karlgren, J., Dussault, N., Kwan, R.Y., Moy, E., Barnes, M., Long, A., Honan, C., Qi, Y.W., Shriver, Z., Ganguly, T., Schultes, B., Venkataraman, G., Kishimoto, T.K.: M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS One 6(6), e21106 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Belting, M.: Glycosaminoglycans in cancer treatment. Thromb. Res. 133(Suppl 2), S95–101 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. Pumphrey, C.Y., Theus, A.M., Li, S., Parrish, R.S., Sanderson, R.D.: Neoglycans, carbodiimide-modified glycosaminoglycans: a new class of anticancer agents that inhibit cancer cell proliferation and induce apoptosis. Cancer Res. 62(13), 3722–3728 (2002)

    CAS  PubMed  Google Scholar 

  47. Yang, X., Du, H., Liu, J., Zhai, G.: Advanced nanocarriers based on heparin and its derivatives for cancer management. Biomacromolecules 16(2), 423–436 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Fubini, B., Ghiazza, M., Fenoglio, I.: Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4, 347–363 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. Liang, Y., Kiick, K.L.: Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater. 10(4), 1588–1600 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. Nurunnabi, M., Khatun, Z., Moon, W.C., Lee, G., Lee, Y.K.: Heparin based nanoparticles for cancer targeting and noninvasive imaging. Quant. Imaging Med. Surg. 2(3), 219–226 (2012)

    PubMed  PubMed Central  Google Scholar 

  51. Jain, R.A.: The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23), 2475–2490 (2000)

    Article  CAS  PubMed  Google Scholar 

  52. Jin, T., Zhang, H.: Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J. Food Sci. 73(3), M127–134 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. Piperigkou, Z., Karamanou, K., Engin, A.B., Gialeli, C., Docea, A.O., Vynios, D.H., Pavao, M.S., Golokhvast, K.S., Shtilman, M.I., Argiris, A., Shishatskaya, E., Tsatsakis, A.M.: Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem. Toxicol. 91, 42–57 (2016)

    Article  CAS  PubMed  Google Scholar 

  54. Chen, Y., Scully, M., Dawson, G., Goodwin, C., Xia, M., Lu, X., Kakkar, A.: Perturbation of the heparin/heparin-sulfate interactome of human breast cancer cells modulates pro-tumourigenic effects associated with PI3K/Akt and MAPK/ERK signalling. Thromb. Haemost. 109(6), 1148–1157 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Y., Scully, M., Petralia, G., Kakkar, A.: Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells. Cancer Biol. Ther. 15(1), 135–145 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. Ettelaie, C., Fountain, D., Collier, M.E., Beeby, E., Xiao, Y.P., Maraveyas, A.: Low molecular weight heparin suppresses tissue factor-mediated cancer cell invasion and migration in vitro. Exp. Ther. Med. 2(2), 363–367 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fluhr, H., Seitz, T., Zygmunt, M.: Heparins modulate the IFN-gamma-induced production of chemokines in human breast cancer cells. Breast Cancer Res. Treat. 137(1), 109–118 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. Santos, J.C., Mesquita, J.M., Belmiro, C.L., da Silveira, C.B., Viskov, C., Mourier, P.A., Pavao, M.S.: Isolation and characterization of a heparin with low antithrombin activity from the body of Styela plicata (Chordata-Tunicata) Distinct effects on venous and arterial models of thrombosis. Thromb. Res. 121(2), 213–223 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dobrovolskaia, M.A., McNeil, S.E.: Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469–478 (2007)

    Article  CAS  PubMed  Google Scholar 

  60. Neagu, M., Piperigkou, Z., Karamanou, K., Engin, A.B., Docea, A.O., Constantin, C., Negrei, C., Nikitovic, D., Tsatsakis, A.: Protein bio-corona: critical issue in immune nanotoxicology. Archives of toxicology (2016).

  61. Silva, A.L., Rosalia, R.A., Varypataki, E., Sibuea, S., Ossendorp, F., Jiskoot, W.: Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 33(7), 847–854 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. Lee, E., Kim, Y.S., Bae, S.M., Kim, S.K., Jin, S., Chung, S.W., Lee, M., Moon, H.T., Jeon, O.C., Park, R.W., Kim, I.S., Byun, Y., Kim, S.Y.: Polyproline-type helical-structured low-molecular weight heparin (LMWH)-taurocholate conjugate as a new angiogenesis inhibitor. Int. J. Cancer 124(12), 2755–2765 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. Chung, S.W., Bae, S.M., Lee, M., Al-Hilal, T.A., Lee, C.K., Kim, J.K., Kim, I.S., Kim, S.Y., Byun, Y.: LHT7, a chemically modified heparin, inhibits multiple stages of angiogenesis by blocking VEGF, FGF2 and PDGF-B signaling pathways. Biomaterials 37, 271–278 (2015)

    Article  CAS  PubMed  Google Scholar 

  64. Kim, J.Y., Shim, G., Choi, H.W., Park, J., Chung, S.W., Kim, S., Kim, K., Kwon, I.C., Kim, C.W., Kim, S.Y., Yang, V.C., Oh, Y.K., Byun, Y.: Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex. Biomaterials 33(17), 4424–4430 (2012)

    Article  CAS  PubMed  Google Scholar 

  65. Alam, F., Al-Hilal, T.A., Park, J., Choi, J.U., Mahmud, F., Jeong, J.H., Kim, I.S., Kim, S.Y., Hwang, S.R., Byun, Y.: Multi-stage inhibition in breast cancer metastasis by orally active triple conjugate, LHTD4 (low molecular weight heparin-taurocholate-tetrameric deoxycholate). Biomaterials 86, 56–67 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. Piperigkou, Z., Karamanou, K., Afratis, N.A., Bouris, P., Gialeli, C., Belmiro, C.L., Pavao, M.S., Vynios, D.H., Tsatsakis, A.M.: Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules. Toxicol. Lett. 240(1), 32–42 (2016)

    Article  CAS  PubMed  Google Scholar 

  67. She, W., Li, N., Luo, K., Guo, C., Wang, G., Geng, Y., Gu, Z.: Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 34(9), 2252–2264 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the EU Horizon 2020 RISE action, GLYCANC project “Matrix glycans as multifunctional pathogenesis factors and therapeutic targets in cancer”, Ref. No. 645756.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achilleas D. Theocharis.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afratis, N.A., Karamanou, K., Piperigkou, Z. et al. The role of heparins and nano-heparins as therapeutic tool in breast cancer. Glycoconj J 34, 299–307 (2017). https://doi.org/10.1007/s10719-016-9742-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9742-7

Keywords

Navigation