Skip to main content
Log in

The dynamical evolution of 3-space in a higher dimensional steady state universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate a class of cosmological solutions of Einstein’s field equations in higher dimensions with a cosmological constant and an ideal fluid matter distribution as a source. We discuss the dynamical evolution of the universe subject to two constraints that (i) the total volume scale factor of the universe is constant and (ii) the effective energy density is constant. We obtain various interesting new dynamics for the external space that yield a time varying deceleration parameter including oscillating cases when the flat/curved external and curved/flat internal spaces are considered. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the extra dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. See Ref. [35] and references therein for further reading on bouncing cosmologies.

  2. See Ref. [3537] and references therein for further reading on oscillating cosmologies.

References

  1. Overduin, J.M., Wesson, P.S.: Kaluza-Klein gravity. Phys. Rep. 283, 303–378 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  2. Lidsey, J.E., Wands, D., Copeland, E.J.: Superstring cosmology. Phys. Rep. 337, 343–492 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. Chodos, A., Detweiler, S.: Where has the fifth dimension gone? Physical Review D 21, 2167 (1980)

    Article  ADS  Google Scholar 

  4. Freund, P.G.O.: Kaluza Klein cosmologies. Nucl. Phys. B 209, 146–156 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  5. Dereli, T., Tucker, R.W.: Dynamical reduction of internal dimensions in the early universe. Phys. Lett. B 125, 133–135 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  6. Barrow, J.D., Stein-Schabes, J.: The stability of some Kaluza-Klein cosmological models. Phys. Lett. B 167, 173–177 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bringmann, T., Eriksson, M., Gustafsson, M.: Cosmological evolution of homogeneous universal extra dimensions. Phys. Rev. D 68, 063516 (2003)

    Article  ADS  Google Scholar 

  8. Akarsu, Ö., Dereli, T.: A four-dimensional \(\Lambda \) CDM-Type cosmological model induced from higher dimensions using a kinematical constraint, (2012) arXiv:1201.4545 [gr-qc].

  9. Bleyer, U., Zhuk, A.: Kasner-like, inflationary and steady-state solutions in multi-dimensional cosmology. Astron. Nachr. 317, 161–173 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)

    Article  ADS  Google Scholar 

  11. Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  12. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  13. Perlmutter, S., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  14. Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  15. Quevedo, F.: Lectures on string/brane cosmology. Class. Quantum Gravity 19, 5721–5779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zeldovich, Ya B.: The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi 11, 381–393 (1968)

    Article  ADS  Google Scholar 

  17. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Sahni, V., Starobinsky, A.: The case for a positive cosmological \(\Lambda \)-term. Int. J. Mod. Phys. D 9, 373–443 (2000)

    ADS  Google Scholar 

  19. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Sahdev, D.: Perfect-fluid higher-dimensional cosmologies. Phys. Rev. D 30, 2495–2507 (1984)

    Google Scholar 

  21. Sato, H.: Dynamics of higher dimensional universe models. Prog. Theor. Phys. 72, 98–105 (1984)

    Article  ADS  MATH  Google Scholar 

  22. Ishihara, H.: Kaluza-Klein inflation. Prog. Theor. Phys. 72, 376–378 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. Demaret, J., Hanquin, J.-L.: Anisotropic Kaluza-Klein cosmologies. Phys. Rev. D 31, 258–261 (1985)

    Article  MathSciNet  Google Scholar 

  24. Okada, Y.: Evolution of the Kaluza-Klein universe. Nucl. Phys. B 264, 197–220 (1986)

    Article  ADS  Google Scholar 

  25. de Leon, J.P., Wesson, P.S.: Exact solutions and the effective equation of state in Kaluza-Klein theory. J. Math. Phys. 34, 4080–4092 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Yearsley, J., Barrow, J.D.: Cosmological models of dimensional segregation. Class. Quantum Gravity 13, 2693–2706 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Mohammedi, N.: Dynamical compactification, standard cosmology, and the accelerating universe. Phys. Rev. D 65, 104018 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  28. Carroll, S.M., Johnson, M.C., Randall, L.: Dynamical compactification from de Sitter space. J. High Energy Phys. 11, 094 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  29. Reyes, L.M., Madriz-Aguilar, J.E., Urena-Lopez, L.A.: Cosmological dark fluid from five-dimensional vacuum. Phys. Rev. D 84, 027503 (2011)

    Article  ADS  Google Scholar 

  30. Rainer, M., Zhuk, A.: Einstein and Brans-Dicke frames in multidimensional cosmology. Gen. Relativ. Gravit. 32, 79–104 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Ho, C.M., Kephart, T.W.: Inflatonless inflation. Int. J. Mod. Phys. A 27, 1250151 (2012)

    Article  ADS  Google Scholar 

  32. Bondi, H., Gold, T.: The steady-state theory of the expanding universe. Mon. Not. R. Astron. Soc. 108, 252–270 (1948)

    ADS  MATH  Google Scholar 

  33. Hoyle, F., Narlikar, J.V.: Mach’s principle and the creation of matter. Proc. R. Soc. 273, 1–11 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Springer, New York (2006)

    MATH  Google Scholar 

  35. Novello, M., Bergliaffa, S.E.P.: Bouncing cosmologies. Pyhs. Rep. 463, 127–213 (2008)

    MathSciNet  Google Scholar 

  36. Barrow, J.D., Dabrowski, M.P.: Oscillating universes. Mon. Not. R. Astron. Soc. 275, 850 (1995)

    ADS  Google Scholar 

  37. Sahni, V., Toporensky, A.: Cosmological hysteresis and the cyclic universe. Phys. Rev. D 85, 123542 (2012)

    Article  ADS  Google Scholar 

  38. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with \(w<-1\) Causes a Cosmic Doomsday. Phys. Rev. Lett. 91, 071301 (2003)

  39. Nesseris, S., Perivolaropoulos, L.: Crossing the phantom divide: theoretical implications and observational status. J. Cosmol. Astropart. Phys. 0701, 018 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  40. Cai, Y.F., Saridakis, E.N., Setare, M.R., Xia, J.Q.: Quintom cosmology: theoretical implications and observations. Phys. Rep. 493, 1–60 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The research reported here is supported by a Post-Doc Research Grant by the Turkish Academy of Sciences (TÜBA). Ö.A. also acknowledges the financial support from Koç University and the support he received from the Abdus Salam International Center for Theoretical Physics (ICTP). Ö.A. is grateful for the hospitality of ICTP while the part of this research was being carried out. We also thank Anastasios Avgoustidis and Barış Çoşkunüzer for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Akarsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akarsu, Ö., Dereli, T. The dynamical evolution of 3-space in a higher dimensional steady state universe. Gen Relativ Gravit 45, 959–986 (2013). https://doi.org/10.1007/s10714-013-1505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1505-1

Keywords

Navigation