Skip to main content
Log in

Extended gravity theories from dynamical noncommutativity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we couple noncommutative vielbein gravity to scalar fields. Noncommutativity is encoded in a \(\star \)-product between forms, given by an abelian twist (a twist with commuting vector fields). A geometric generalization of the Seiberg–Witten map for abelian twists yields an extended theory of gravity coupled to scalars, where all fields are ordinary (commutative) fields. The vectors defining the twist can be related to the scalar fields and their derivatives, and hence acquire dynamics. Higher derivative corrections to the classical Einstein–Hilbert and Klein–Gordon actions are organized in successive powers of the noncommutativity parameter \(\theta ^{AB}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When restricted to \(0\)-forms, and if \(X_A= \delta ^\mu _A \,{\partial \over \partial x^\mu }\), the \(\star \)-product reduces to the well-known Moyal-Groenewold product [5, 6].

References

  1. Aschieri, P., Castellani, L.: Noncommutative D \(=\) 4 gravity coupled to fermions. JHEP 0906, 086 (2009). [arXiv:0902.3817 [hep-th]]

  2. Aschieri, P., Castellani, L.: Noncommutative supergravity in D \(=\) 3 and D \(=\) 4, JHEP 0906, 087 (2009). [arXiv:0902.3823 [hep-th]]

  3. Aschieri, P., Castellani, L.: Noncommutative gravity coupled to fermions: second order expansion via Seiberg–Witten map. JHEP 1207, 184 (2012). [arXiv:1111.4822 [hep-th]]

  4. Aschieri, P., Castellani, L.: Noncommutative gauge fields coupled to noncommutative gravity. arXiv:1205.1911 [hep-th]

  5. Moyal, J.E., Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99 (1949)

    Google Scholar 

  6. Groenewold, H.: Physica 12, 405 (1946)

    Google Scholar 

  7. Ohl, T., Schenkel, A.: Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes. Gen. Relativ. Gravit. 42, 2785 (2010). [arXiv:0912.2252 [hep-th]]

    Google Scholar 

  8. Schenkel, A., Uhlemann, C.F.: Field theory on curved noncommutative spacetimes. SIGMA 6, 061 (2010). [arXiv:1003.3190 [hep-th]]

  9. Aschieri, P., Dimitrijevic, M., Meyer, F., Wess, J.: Noncommutative geometry and gravity. Class. Quantum Grav. 23, 1883 (2006). [hep-th/0510059]

    Google Scholar 

  10. Seiberg, N., Witten, E.: String theory and noncommutative geometry, JHEP 9909, 032 (1999). [hep-th/9908142]

  11. Aschieri, P., Castellani, L., Dimitrijevic, M.: Noncommutative gravity at second order via Seiberg–Witten map. arXiv:1207.4346 [hep-th]

  12. Aschieri, P., Castellani, L., Dimitrijevic, M.: Dynamical noncommutativity and Noether theorem in twisted \(\phi ^{\star 4}\) theory. Lett. Math. Phys. 85, 39 (2008). [arXiv:0803.4325 [hep-th]]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Aschieri.

Appendix: Gamma matrices in \(D=4\)

Appendix: Gamma matrices in \(D=4\)

We summarize in this appendix our gamma matrix conventions in \(D=4\).

$$\begin{aligned}&\eta _{ab} =(1,-1,-1,-1),~~~\{\gamma _a,\gamma _b\}=2 \eta _{ab},~~~[\gamma _a,\gamma _b]=2 \gamma _{ab}, \end{aligned}$$
(9.1)
$$\begin{aligned}&\gamma _5 \equiv i \gamma _0\gamma _1\gamma _2\gamma _3,~~~\gamma _5 \gamma _5 = 1,~~~\varepsilon _{0123} = - \varepsilon ^{0123}=1, \end{aligned}$$
(9.2)
$$\begin{aligned}&\gamma _a^\dagger = \gamma _0 \gamma _a \gamma _0, ~~~\gamma _5^\dagger = \gamma _5 \end{aligned}$$
(9.3)
$$\begin{aligned}&\gamma _a^T = - C \gamma _a C^{-1},~~~\gamma _5^T = C \gamma _5 C^{-1}, ~~~C^2 =-1,~~~C^\dagger =C^T =-C \end{aligned}$$
(9.4)

1.1 Useful identities

$$\begin{aligned} \gamma _a\gamma _b&= \gamma _{ab}+\eta _{ab}\end{aligned}$$
(9.5)
$$\begin{aligned} \gamma _{ab} \gamma _5&= {i \over 2} \epsilon _{abcd} \gamma ^{cd}\end{aligned}$$
(9.6)
$$\begin{aligned} \gamma _{ab} \gamma _c&= \eta _{bc} \gamma _a - \eta _{ac} \gamma _b -i \varepsilon _{abcd}\gamma _5 \gamma ^d\end{aligned}$$
(9.7)
$$\begin{aligned} \gamma _c \gamma _{ab}&= \eta _{ac} \gamma _b - \eta _{bc} \gamma _a -i \varepsilon _{abcd}\gamma _5 \gamma ^d\end{aligned}$$
(9.8)
$$\begin{aligned} \gamma _a\gamma _b\gamma _c&= \eta _{ab}\gamma _c + \eta _{bc} \gamma _a - \eta _{ac} \gamma _b -i \varepsilon _{abcd}\gamma _5 \gamma ^d\end{aligned}$$
(9.9)
$$\begin{aligned} \gamma ^{ab} \gamma _{cd}&= -i \varepsilon ^{ab}_{~~cd}\gamma _5 - 4 \delta ^{[a}_{[c} \gamma ^{b]}_{~~d]} - 2 \delta ^{ab}_{cd}\end{aligned}$$
(9.10)
$$\begin{aligned} Tr(\gamma _a \gamma ^{bc} \gamma _d)&= 8~ \delta ^{bc}_{ad} \end{aligned}$$
(9.11)
$$\begin{aligned} Tr(\gamma _5 \gamma _a \gamma _{bc} \gamma _d)&= -4 \;\!i \varepsilon _{abcd} \end{aligned}$$
(9.12)
$$\begin{aligned} Tr(\gamma ^{rs} \gamma _a \gamma _{bc} \gamma _d)&= 4(-2 \delta ^{rs}_{cd} \eta _{ab} + 2 \delta ^{rs}_{bd} \eta _{ac} - 3! \delta ^{rse}_{abc} \eta _{ed}) \end{aligned}$$
(9.13)
$$\begin{aligned} Tr(\gamma _5 \gamma ^{rs} \gamma _a \gamma _{bc} \gamma _d)&= 4(-i \eta _{ab} \varepsilon ^{rs}_{~~cd} + i \eta _{ac} \varepsilon ^{rs}_{~~bd} + 2i \varepsilon _{abc}^{~~~e} \delta ^{rs}_{ed}) \end{aligned}$$
(9.14)

where \(\delta ^{ab}_{cd} \equiv \frac{1}{2}(\delta ^a_c\delta ^b_d-\delta ^b_c\delta ^a_d)\), \(\delta ^{rse}_{abc} \equiv {1 \over 3!} (\delta ^r_a \delta ^s_b \delta ^e_c\) + 5 terms), and indices antisymmetrization in square brackets has total weight \(1\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschieri, P., Castellani, L. Extended gravity theories from dynamical noncommutativity. Gen Relativ Gravit 45, 411–426 (2013). https://doi.org/10.1007/s10714-012-1479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1479-4

Keywords

Navigation