Skip to main content
Log in

Might Quantum-Induced Deviations from the Einstein Equations Detectably Affect Gravitational Wave Propagation?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A quantum measurement-like event can produce any of a number of macroscopically distinct results, with corresponding macroscopically distinct gravitational fields, from the same initial state. Hence the probabilistically evolving large-scale structure of space-time is not precisely or even always approximately described by the deterministic Einstein equations.

Since the standard treatment of gravitational wave propagation assumes the validity of the Einstein equations, it is questionable whether we should expect all its predictions to be empirically verified. In particular, one might expect the stochasticity of amplified quantum indeterminacy to cause coherent gravitational wave signals to decay faster than standard predictions suggest. This need not imply that the radiated energy flux from gravitational wave sources differs from standard theoretical predictions. An underappreciated bonus of gravitational wave astronomy is that either detecting or failing to detect predicted gravitational wave signals would constrain the form of the semi-classical theory of gravity that we presently lack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kent, A.: Phys. Rev. A 87, 022105 (2013)

    Article  ADS  Google Scholar 

  2. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  3. Clauser, J., Horne, M., Shimony, A., Holt, R.: Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  4. Colbeck, R., Renner, R.: Phys. Rev. Lett. 108, 150402 (2012)

    Article  ADS  Google Scholar 

  5. Pusey, M.F., Barrett, J., Rudolph, T.: Nat. Phys. 8, 476 (2012)

    Article  Google Scholar 

  6. Page, D., Geilker, C.: Phys. Rev. Lett. 47, 979 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  7. Saunders, S., Barrett, J., Kent, A., Wallace, D.: Many Worlds?: Everett, Quantum Theory, and Reality. Oxford University Press, London (2010)

    MATH  Google Scholar 

  8. Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1999), and references therein

    Google Scholar 

  9. Diosi, L.: Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  10. Pearle, P., Squires, E.: quant-ph/9503019

  11. Kent, A.: Causal quantum theory and the collapse locality loophole. Phys. Rev. A 72(1), 012107 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Kent, A.: A proposed test of the local causality of spacetime. In: Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle, pp. 369–378 (2009)

    Chapter  Google Scholar 

  13. Salart, D., Baas, A., Van Houwelingen, J.A.W., Gisin, N., Zbinden, H.: Spacelike separation in a Bell test assuming gravitationally induced collapses. Phys. Rev. Lett. 100(22), 220404 (2008)

    Article  ADS  Google Scholar 

  14. Rideout, D., et al.: Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities. Class. Quantum Gravity 29, 224011 (2012)

    Article  Google Scholar 

  15. Gell-Mann, M., Hartle, J.B.: In: Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information. SFI Studies in the Sciences of Complexity, vol. VIII. Addison-Wesley, Reading (1990)

    Google Scholar 

  16. Gell-Mann, M., Hartle, J.B.: In: Halliwell, J., Pérez-Mercader, J., Zurek, W. (eds.) Proceedings of the NATO Workshop on the Physical Origins of Time Asymmetry, Mazagón, Spain, September 30–October 4, 1991 Cambridge University Press, Cambridge (1994)

    Google Scholar 

  17. Gell-Mann, M., Hartle, J.B.: Phys. Rev. D 47, 3345 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  18. Taylor, J., Fowler, L., Weisberg, J.: Nature 277, 437 (1979)

    Article  ADS  Google Scholar 

  19. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Leverhulme Research Fellowship, a grant from the John Templeton Foundation, and by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Kent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, A. Might Quantum-Induced Deviations from the Einstein Equations Detectably Affect Gravitational Wave Propagation?. Found Phys 43, 707–718 (2013). https://doi.org/10.1007/s10701-013-9716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9716-6

Keywords

Navigation