Skip to main content

Quantum Gravity and Gravitational-Wave Astronomy

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

We review the present status of quantum-gravity phenomenology in relation to gravitational waves (GWs). The topic can be approached from two directions, a model-dependent one and a model-independent one. In the first case, we introduce some among the most prominent cosmological models embedded in theories of quantum gravity, while in the second case we point out certain common features one finds in quantum gravity. Three cosmological GW observables can be affected by perturbative as well as non-perturbative quantum-gravity effects: the stochastic GW background, the propagation speed of GWs, and the luminosity distance of GW sources. While many quantum-gravity models do not give rise to any observable signal, some predict a blue-tilted stochastic background or a modified luminosity distance, both detectable by future GW interferometers. We conclude that it is difficult, but still possible, to test quantum gravity with GW observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott BP et al. [LIGO Scientific and Virgo Collaborations] (2016) Tests of general relativity with GW150914, Phys Rev Lett 116:221101 ; Erratum-ibid 121:129902 (2018), arXiv:1602.03841

    Google Scholar 

  2. LIGO Scientific Collaboration and Virgo Collaboration. GW190412: observation of a binary-black-hole coalescence with asymmetric masses, Phys. Rev. D 102:043015 (2020), arXiv:2004.08342

    Google Scholar 

  3. Amelino-Camelia G (1998) An interferometric gravitational wave detector as a quantum gravity apparatus. Nature 398:216, arXiv:gr-qc/9808029

    Google Scholar 

  4. Ng YJ, Van Dam H (2000) Measuring the foaminess of space-time with gravity-wave interferometers. Found Phys 30:795, arXiv:gr-qc/9906003

    Google Scholar 

  5. Amelino-Camelia G (2013) Quantum-spacetime phenomenology. Living Rev Rel 16:5, arXiv:0806.0339

    Google Scholar 

  6. Ellis J, Mavromatos NE, Nanopoulos DV (2016) Comments on graviton propagation in light of GW150914. Mod Phys Lett A 31:1650155, arXiv:1602.04764

    Google Scholar 

  7. Calcagni G (2017) Multifractional theories: an unconventional review. J High Energy Phys 1703:138, arXiv:1612.05632

    Google Scholar 

  8. Arzano M, Calcagni G (2016) What gravity waves are telling about quantum spacetime. Phys Rev D 93:124065, arXiv:1604.00541

    Google Scholar 

  9. Yunes N, Yagi K, Pretorius F (2016) Theoretical physics implications of the binary black-hole merger GW150914. Phys Rev D 94:084002, arXiv:1603.08955

    Google Scholar 

  10. Kobakhidze A, Lagger C, Manning A (2016) Constraining noncommutative spacetime from GW150914. Phys Rev D 94:064033, arXiv:1607.03776

    Google Scholar 

  11. Amelino-Camelia G, Calcagni G, Ronco M (2017) Imprint of quantum gravity in the dimension and fabric of spacetime. Phys Lett B 774:630, arXiv:1705.04876

    Google Scholar 

  12. Berti E, Yagi K, Yunes N (2018) Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral-merger. Gen Rel Grav 50:46, arXiv:1801.03208

    Google Scholar 

  13. Tahura S, Yagi K (2018) Parametrized post-Einsteinian gravitational waveforms in various modified theories of gravity. Phys Rev D 98:084042, arXiv:1809.00259

    Google Scholar 

  14. Maselli A, Pani P, Cardoso V, Abdelsalhin T, Gualtieri L, Ferrari V (2019) From micro to macro and back: probing near-horizon quantum structures with gravitational waves. Class Quantum Grav 36:167001, arXiv:1811.03689

    Google Scholar 

  15. Bosso P, Das S, Mann RB (2018) Potential tests of the generalized uncertainty principle in the advanced LIGO experiment. Phys Lett B 785:498, arXiv:1804.03620

    Google Scholar 

  16. Addazi A, Marcianò A, Yunes N (2019) Can we probe Planckian corrections at the horizon scale with gravitational waves? Phys Rev Lett 122:081301, arXiv:1810.10417

    Google Scholar 

  17. Giddings SB, Koren S, Treviño G (2019) Exploring strong-field deviations from general relativity via gravitational waves. Phys Rev D 100:044005, arXiv:1904.04258

    Google Scholar 

  18. Calcagni G, Kuroyanagi S, Marsat S, Sakellariadou M, Tamanini N, Tasinato G (2019) Gravitational-wave luminosity distance in quantum gravity. Phys Lett B 798:135000, arXiv:1904.00384

    Google Scholar 

  19. Belgacem E et al [LISA Cosmology Working Group] (2019) Testing modified gravity at cosmological distances with LISA standard sirens. JCAP 07:024, arXiv:1906.01593

    Google Scholar 

  20. Calcagni G, Kuroyanagi S, Marsat S, Sakellariadou M, Tamanini N, Tasinato G (2019) Quantum gravity and gravitational-wave astronomy. JCAP 10:012, arXiv:1907.02489

    Google Scholar 

  21. Ford LH (1982) Gravitational radiation by quantum systems. Ann Phys (NY) 144:238

    Article  ADS  Google Scholar 

  22. Wald RM (1984) General relativity. The University of Chicago Press, Chicago

    Book  Google Scholar 

  23. Page DN, Geilker CD (1981) Indirect evidence for quantum gravity. Phys Rev Lett 47:979

    Article  ADS  MathSciNet  Google Scholar 

  24. Carlip S (2008) Is quantum gravity necessary? Class Quantum Grav 25:154010, arXiv:0803.3456

    Google Scholar 

  25. Bartolo N et al (2016) Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves. JCAP 12:026, arXiv:1610.06481

    Google Scholar 

  26. Kuroyanagi S, Chiba T, Takahashi T (2018) Probing the universe through the stochastic gravitational wave background. JCAP 11:038, arXiv:1807.00786

    Google Scholar 

  27. Oriti D (ed) (2009) Approaches to quantum gravity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Ellis GFR, Murugan J, Weltman A (eds) (2012) Foundations of space and time. Cambridge University Press, Cambridge

    Google Scholar 

  29. Calcagni G (2017) Classical and quantum cosmology. Springer, Switzerland

    Book  Google Scholar 

  30. Stelle KS (1977) Renormalization of higher-derivative quantum gravity. Phys Rev D 16:953

    Article  ADS  MathSciNet  Google Scholar 

  31. Stelle KS (1978) Classical gravity with higher derivatives. Gen Rel Grav 9:353

    Article  ADS  MathSciNet  Google Scholar 

  32. Asorey M, López JL, Shapiro IL (1997) Some remarks on high derivative quantum gravity. Int J Mod Phys A 12:5711,, arXiv:hep-th/9610006

    Google Scholar 

  33. Accioly A, Azeredo A, Mukai H (2002) Propagator, tree-level unitarity and effective nonrelativistic potential for higher-derivative gravity theories in D dimensions. J Math Phys (NY) 43:473

    Article  ADS  MathSciNet  Google Scholar 

  34. Polchinski J (1998) String theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Becker K, Becker M, Schwarz JH (2007) String theory and M-theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Zwiebach B (2009) A first course in string theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  37. Baumann D, McAllister L (2015) Inflation and string theory. Cambridge University Press, Cambridge, arXiv:1404.2601

    ADS  MATH  Google Scholar 

  38. Weinberg S (1979) Ultraviolet divergences in quantum gravity. In: Hawking SW, Israel W (eds) General relativity: an Einstein centenary survey. Cambridge University Press, Cambridge

    Google Scholar 

  39. Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971, arXiv:hep-th/9605030

    Google Scholar 

  40. Niedermaier M, Reuter M (2006) The asymptotic safety scenario in quantum gravity. Living Rev Rel 9:5

    Article  Google Scholar 

  41. Niedermaier M (2007) The asymptotic safety scenario in quantum gravity: an introduction. Class Quantum Grav 24:R171, arXiv:gr-qc/0610018

    Google Scholar 

  42. Codello A, Percacci R, Rahmede C (2009) Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann Phys 324:414, arXiv:0805.2909

    Google Scholar 

  43. Litim DF (2011) Renormalisation group and the Planck scale. Phil Trans R Soc Lond A 369:2759, arXiv:1102.4624

    Google Scholar 

  44. Reuter M, Saueressig F (2013) Asymptotic safety, fractals, and cosmology. Lect Notes Phys 863:185, arXiv:1205.5431

    Google Scholar 

  45. Rovelli C (2007) Quantum gravity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  46. Thiemann T (2007) Modern canonical quantum general relativity. Cambridge University Press, Cambridge; Introduction to modern canonical quantum general relativity, arXiv:gr-qc/0110034

    Google Scholar 

  47. Perez A (2003) Spin foam models for quantum gravity, Class Quantum Grav 20:R43, arXiv:gr-qc/0301113

    Google Scholar 

  48. Rovelli C (2011) A new look at loop quantum gravity. Class Quantum Grav 28:114005, arXiv:1004.1780

    Google Scholar 

  49. Perez A (2013) The spin-foam approach to quantum gravity. Living Rev Rel 16:3

    Article  Google Scholar 

  50. Freidel L (2005) Group field theory: an overview. Int J Theor Phys 44:1769, arXiv:hep-th/0505016

    Google Scholar 

  51. Baratin A, Oriti D (2012) Ten questions on group field theory (and their tentative answers). J Phys Conf Ser 360:012002, arXiv:1112.3270

    Google Scholar 

  52. Oriti D (2016) Group field theory as the second quantization of loop quantum gravity. Class Quantum Grav 33:085005, arXiv:1310.7786

    Google Scholar 

  53. Gielen S, Sindoni L (2016) Quantum cosmology from group field theory condensates: a review. SIGMA 12:082, arXiv:1602.08104

    Google Scholar 

  54. Ambjørn J, Jurkiewicz J (1995) Scaling in four-dimensional quantum gravity. Nucl Phys B 451:643, arXiv:hep-th/9503006

    Google Scholar 

  55. Ambjørn J, Jurkiewicz J, Loll R (2005) Spectral dimension of the universe. Phys Rev Lett 95:171301, arXiv:hep-th/0505113

    Google Scholar 

  56. Ambjørn J, Jurkiewicz J, Loll R (2005) Reconstructing the universe. Phys Rev D 72:064014, arXiv:hep-th/0505154

    Google Scholar 

  57. Loll R (2008) The emergence of spacetime, or, quantum gravity on your desktop. Class Quantum Grav 25:114006, arXiv:0711.0273

    Google Scholar 

  58. Ambjørn J, Jurkiewicz J, Loll R (2012) Causal dynamical triangulations and the quest for quantum gravity. In: Ellis GFR et al (eds) (2012), arXiv:1004.0352

    Google Scholar 

  59. Ambjørn J, Görlich A, Jurkiewicz J, Loll R (2012) Nonperturbative quantum gravity. Phys Rept 519:127, arXiv:1203.3591

    Google Scholar 

  60. Coumbe DN, Jurkiewicz J (2015) Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations. JHEP 03:151, arXiv:1411.7712

    Google Scholar 

  61. Cooperman JH, Dorghabekov M, Setting the physical scale of dimensional reduction in causal dynamical triangulations, arXiv:1812.09331

    Google Scholar 

  62. Kuz’min YV (1989) The convergent nonlocal gravitation. Sov J Nucl Phys 50:1011 [Yad Fiz 50:1630 (1989)]

    Google Scholar 

  63. Tomboulis ET, Super-renormalizable gauge and gravitational theories, arXiv:hep-th/9702146

    Google Scholar 

  64. Modesto L (2012) Super-renormalizable quantum gravity. Phys Rev D 86:044005, arXiv:1107.2403

    Google Scholar 

  65. Biswas T, Gerwick E, Koivisto T, Mazumdar A (2012) Towards singularity and ghost free theories of gravity. Phys Rev Lett 108:031101, arXiv:1110.5249

    Google Scholar 

  66. Modesto L, RachwałL (2017) Nonlocal quantum gravity: a review. Int J Mod Phys D 26:1730020

    Google Scholar 

  67. Briscese F, Calcagni G, Modesto L (2019) Nonlinear stability in nonlocal gravity. Phys Rev D 99:084041, arXiv:1901.03267

    Google Scholar 

  68. Hořava P (2009) Quantum gravity at a Lifshitz point. Phys Rev D 79:084008, arXiv:0901.3775

    Google Scholar 

  69. Hořava P (2009) Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys Rev Lett 102:161301, arXiv:0902.3657

    Google Scholar 

  70. Hořava P, Melby-Thompson CM (2010) General covariance in quantum gravity at a Lifshitz point. Phys Rev D 82 064027, arXiv:1007.2410

    Google Scholar 

  71. Brandenberger RH (2011) String gas cosmology: progress and problems. Class Quantum Grav 28:204005, arXiv:1105.3247

    Google Scholar 

  72. Brandenberger RH (2015) String gas cosmology after Planck. Class Quantum Grav 32:234002, arXiv:1505.02381

    Google Scholar 

  73. Brandenberger R, Wang Z (2020) Nonsingular ekpyrotic cosmology with a nearly scale-invariant spectrum of cosmological perturbations and gravitational waves. Phys Rev D 101:063522, arXiv:2001.00638

    Google Scholar 

  74. Brandenberger R, Wang Z (2020) Ekpyrotic cosmology with a zero-shear S-brane. Phys Rev D 102:023516, arXiv:2004.06437

    Google Scholar 

  75. Brandenberger R, Ho P-M (2002) Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations Phys Rev D 66:023517, arXiv:hep-th/0203119

    Google Scholar 

  76. Calcagni G, Kuroyanagi S, Ohashi J, Tsujikawa S (2014) Strong Planck constraints on braneworld and non-commutative inflation. JCAP 1403:052, arXiv:1310.5186

    Google Scholar 

  77. Szabo RJ (2003) Quantum field theory on noncommutative spaces. Phys Rept 378:207, arXiv:hep-th/0109162

    Google Scholar 

  78. Aschieri P, Dimitrijevic M, Kulish P, Lizzi F, Wess J (2009) Noncommutative spacetimes. Springer, Berlin

    Book  Google Scholar 

  79. Benedetti D (2009) Fractal properties of quantum spacetime. Phys Rev Lett 102:111303, arXiv:0811.1396

    Google Scholar 

  80. Arzano M, Trześniewski T (2014) Diffusion on κ-Minkowski space. Phys Rev D 89:124024, arXiv:1404.4762

    Google Scholar 

  81. Padmanabhan T (1998) Quantum structure of space-time and black hole entropy. Phys Rev Lett 81:4297, arXiv:hep-th/9801015

    Google Scholar 

  82. Padmanabhan T (1999) Event horizon: magnifying glass for Planck length physics. Phys Rev D 59:124012, arXiv:hep-th/9801138

    Google Scholar 

  83. Arzano M, Calcagni G (2013) Black-hole entropy and minimal diffusion. Phys Rev D 88:084017, arXiv:1307.6122

    Google Scholar 

  84. Akrami Y et al [Planck Collaboration]. Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641:A10 (2020), arXiv:1807.06211

    Google Scholar 

  85. Kuroyanagi S, Takahashi T, Yokoyama S (2015) Blue-tilted tensor spectrum and thermal history of the universe. JCAP 1502:003, arXiv:1407.4785

    Google Scholar 

  86. Abbott BP et al [LIGO Scientific and Virgo Collaborations] (2016) GW150914: implications for the stochastic gravitational wave background from binary black holes. Phys Rev Lett 116:131102, arXiv:1602.03847

    Google Scholar 

  87. Abbott BP et al [LIGO Scientific and Virgo Collaborations] (2018) GW170817: implications for the stochastic gravitational-wave background from compact binary coalescences. Phys Rev Lett 120:091101, arXiv:1710.05837

    Google Scholar 

  88. Akutsu T et al [KAGRA] (2019) KAGRA: 2.5 generation interferometric gravitational wave detector. Nat Astron 3:35, arXiv:1811.08079

    Google Scholar 

  89. Caprini C, Figueroa DG, Flauger R, Nardini G, Peloso M, Pieroni M, Ricciardone A, Tasinato G (2019) Reconstructing the spectral shape of a stochastic gravitational wave background with LISA. JCAP 1911:017, arXiv:1906.09244

    Google Scholar 

  90. Maggiore M, Van Den Broeck C, Bartolo N, Belgacem E, Bertacca D, Bizouard MA, Branchesi M, Clesse S, Foffa S, García-Bellido J, Grimm S, Harms J, Hinderer T, Matarrese S, Palomba C, Peloso M, Ricciardone A, Sakellariadou M (2020) Science case for the Einstein Telescope. JCAP 03:050, arXiv:1912.02622

    Google Scholar 

  91. Seto N, Kawamura S, Nakamura T (2001) Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys Rev Lett 87:221103, arXiv:astro-ph/0108011

    Google Scholar 

  92. Kawamura S et al (2011) The Japanese space gravitational wave antenna: DECIGO. Class Quant Grav 28:094011

    Article  ADS  Google Scholar 

  93. Kawamura S et al Current status of space gravitational wave antenna DECIGO and B-DECIGO, arXiv:2006.13545

    Google Scholar 

  94. Arzoumanian Z et al [NANOGRAV] (2018) The NANOGrav 11-year data set: pulsar-timing constraints on the stochastic gravitational-wave background. Astrophys J 859:47, arXiv:1801.02617

    Google Scholar 

  95. Janssen G et al (2015) Gravitational wave astronomy with the SKA. PoS AASKA14:037, arXiv:1501.00127

    Google Scholar 

  96. Khoury J, Ovrut BA, Steinhardt PJ, Turok N (2001) Ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys Rev D 64:123522, arXiv:hep-th/0103239

    Google Scholar 

  97. Khoury J, Steinhardt PJ (2010) Adiabatic ekpyrosis: scale-invariant curvature perturbations from a single scalar field in a contracting universe. Phys Rev Lett 104:091301, arXiv:0910.2230

    Google Scholar 

  98. Khoury J, Steinhardt PJ (2011) Generating scale-invariant perturbations from rapidly-evolving equation of state. Phys Rev D 83:123502, arXiv:1101.3548

    Google Scholar 

  99. Boyle LA, Steinhardt PJ, Turok N (2004) Cosmic gravitational-wave background in a cyclic universe. Phys Rev D 69:127302, arXiv:hep-th/0307170

    Google Scholar 

  100. Kiefer C, Krämer M (2012) Quantum gravitational contributions to the CMB anisotropy spectrum. Phys Rev Lett 108:021301, arXiv:1103.4967

    Google Scholar 

  101. Bini D, Esposito G, Kiefer C, Krämer M, Pessina F (2013) On the modification of the cosmic microwave background anisotropy spectrum from canonical quantum gravity. Phys Rev D 87:104008, arXiv:1303.0531

    Google Scholar 

  102. Brizuela D, Kiefer C, Krämer M (2016) Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: the slow-roll approximation. Phys Rev D 94:123527, arXiv:1611.02932

    Google Scholar 

  103. Agullò I, Morris NA (2015) Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra. Phys Rev D 92:124040, arXiv:1509.05693

    Google Scholar 

  104. Li BF, Singh P, Wang A (2020) Primordial power spectrum from the dressed metric approach in loop cosmologies. Phys Rev D 101:086004, arXiv:1912.08225

    Google Scholar 

  105. Bojowald M, Calcagni G, Tsujikawa S (2011) Observational test of inflation in loop quantum cosmology. JCAP 1111:046, arXiv:1107.1540

    Google Scholar 

  106. Zhu T, Wang A, Kirsten K, Cleaver G, Sheng Q, Wu Q (2016) Inflationary spectra with inverse-volume corrections in loop quantum cosmology and their observational constraints from Planck 2015 data. JCAP 1603:046, arXiv:1510.03855

    Google Scholar 

  107. Bolliet B, Barrau A, Grain J, Schander S (2016) Observational exclusion of a consistent quantum cosmology scenario. Phys Rev D 93:124011, arXiv:1510.08766

    Google Scholar 

  108. Martín de Blas D, Olmedo J (2016) Primordial power spectra for scalar perturbations in loop quantum cosmology. JCAP 06:029, arXiv:1601.01716

    Google Scholar 

  109. Castelló Gomar L, Mena Marugán GA, Martín de Blas D, Olmedo J (2017) Hybrid loop quantum cosmology and predictions for the cosmic microwave background. Phys Rev D 96:103528, arXiv:1702.06036

    Google Scholar 

  110. Briscese F, Modesto L, Tsujikawa S (2014) Super-renormalizable or finite completion of the Starobinsky theory. Phys Rev D 89:024029, arXiv:1308.1413

    Google Scholar 

  111. Koshelev AS, Modesto L, RachwałL, Starobinsky AA (2016) Occurrence of exact R2 inflation in non-local UV-complete gravity. JHEP 11:067, arXiv:1604.03127

    Google Scholar 

  112. Koshelev AS, Kumar KS, Starobinsky AA (2018) R2 inflation to probe non-perturbative quantum gravity. JHEP 03:071, arXiv:1711.08864

    Google Scholar 

  113. Koshelev AS, Kumar KS, Mazumdar A, Starobinsky AA (2020) Non-Gaussianities and tensor-to-scalar ratio in non-local R2-like inflation, JHEP 0306:152, arXiv:2003.00629

    Google Scholar 

  114. Calcagni G, Kuroyanagi S (To appear) Stochastic gravitational-wave background in quantum gravity. JCAP 03:019 (2021)

    Article  ADS  Google Scholar 

  115. ’t Hooft G (1993) Dimensional reduction in quantum gravity. In: Ali A, Ellis J, Randjbar-Daemi S (eds) Salamfestschrift. World Scientific, Singapore, arXiv:gr-qc/9310026

    Google Scholar 

  116. Carlip S (2017) Dimension and dimensional reduction in quantum gravity. Class Quant Grav 34:193001, arXiv:1705.05417

    Google Scholar 

  117. Amelino-Camelia G, Ellis JR, Mavromatos NE, Nanopoulos DV (1997) Distance measurement and wave dispersion in a Liouville string approach to quantum gravity. Int J Mod Phys A 12:607, arXiv:hep-th/9605211

    Google Scholar 

  118. Lauscher O, Reuter M (2005) Fractal spacetime structure in asymptotically safe gravity. JHEP 0510:050, arXiv:hep-th/0508202

    Google Scholar 

  119. Belenchia A, Benincasa DMT, Liberati S (2015) Nonlocal scalar quantum field theory from causal sets. JHEP 1503:036, arXiv:1411.6513

    Google Scholar 

  120. Gambini R, Pullin J (1999) Nonstandard optics from quantum space-time. Phys Rev D 59:124021, arXiv:gr-qc/9809038

    Google Scholar 

  121. Alfaro J, Morales-Técotl HA, Urrutia LF (2000) Quantum gravity corrections to neutrino propagation. Phys Rev Lett 84:2318, arXiv:gr-qc/9909079

    Google Scholar 

  122. Amelino-Camelia G, Arzano M, Procaccini A (2004) Severe constraints on loop-quantum-gravity energy-momentum dispersion relation from black-hole area-entropy law. Phys Rev D 70:107501, arXiv:gr-qc/0405084

    Google Scholar 

  123. Ronco M (2016) On the UV dimensions of loop quantum gravity. Adv High Energy Phys 2016:9897051, arXiv:1605.05979

    Google Scholar 

  124. Cardoso V, Dias ÓJC, Lemos JPS (2003) Gravitational radiation in D-dimensional spacetimes. Phys Rev D 67:064026, arXiv:hep-th/0212168

    Google Scholar 

  125. Maggiore M (2007) Gravitational waves, vol. 1 Oxford University Press, Oxford

    Book  Google Scholar 

  126. Ng YJ, Van Dam H (1994) Limit to space-time measurement. Mod Phys Lett A 9:335

    Article  ADS  Google Scholar 

  127. Amelino-Camelia G (1994) Limits on the measurability of space-time distances in the semiclassical approximation of quantum gravity. Mod Phys Lett A 9:3415, arXiv:gr-qc/9603014

    Google Scholar 

  128. Deffayet C, Menou K (2007) Probing gravity with spacetime sirens. Astrophys J 668:L143, arXiv:0709.0003

    Google Scholar 

  129. Pardo K, Fishbach M, Holz DE, Spergel DN (2018) Limits on the number of spacetime dimensions from GW170817. JCAP 1807:048, arXiv:1801.08160

    Google Scholar 

  130. Andriot D, Lucena Gómez G (2017) Signatures of extra dimensions in gravitational waves. JCAP 1706:048, arXiv:1704.07392

    Google Scholar 

  131. Abbott BP et al [LIGO Scientific and Virgo Collaborations] (2019) Tests of general relativity with GW170817. Phys Rev Lett 123:011102, arXiv:1811.00364

    Google Scholar 

  132. Abbott BP et al [LIGO Scientific and Virgo and Fermi-GBM and INTEGRAL Collaborations] (2017) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J 848:L13, arXiv:1710.05834

    Google Scholar 

  133. Calcagni G, Oriti D, Thürigen J (2015) Dimensional flow in discrete quantum geometries. Phys Rev D 91:084047, arXiv:1412.8390

    Google Scholar 

  134. Dalal N, Holz DE, Hughes SA, Jain B (2006) Short GRB and binary black hole standard sirens as a probe of dark energy. Phys Rev D 74:063006, arXiv:astro-ph/0601275

    Google Scholar 

  135. Nissanke S, Holz DE, Hughes SA, Dalal N, Sievers JL (2010) Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys J 725:496, arXiv:0904.1017

    Google Scholar 

  136. Camera S, Nishizawa A (2013) Beyond concordance cosmology with magnification of gravitational-wave standard sirens. Phys Rev Lett 110:151103, arXiv:1303.5446

    Google Scholar 

  137. Tamanini N, Caprini C, Barausse E, Sesana A, Klein A, Petiteau A (2016) Science with the space-based interferometer eLISA. III: Probing the expansion of the universe using gravitational wave standard sirens. JCAP 1604:002, arXiv:1601.07112

    Google Scholar 

Download references

Acknowledgements

The author is supported by the I+D grant FIS2017-86497-C2-2-P of the Spanish Ministry of Science and Innovation and acknowledges networking support by the COST Action CA18108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Calcagni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Calcagni, G. (2022). Quantum Gravity and Gravitational-Wave Astronomy. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_30

Download citation

Publish with us

Policies and ethics