Skip to main content
Log in

A Symmetrical Interpretation of the Klein-Gordon Equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein’s bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies of the CI, and gives intuitive explanations of some previously mysterious quantum effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bacciagaluppi, G., Valentini, A.: Quantum theory at the crossroads: reconsidering the 1927 Solvay conference. arXiv:quant-ph/0609184v2, 24 October (2009)

  2. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  3. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410–B1416 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  4. Davidon, W.C.: Quantum physics of single systems. Il Nuovo Cimento B 36, 34–40 (1976)

    Article  ADS  Google Scholar 

  5. Aharonov, Y., Gruss, E.Y.: Two-time interpretation of quantum mechanics. arXiv:quant-ph/0507269v1, 28 July (2005) and references therein

  6. Aharonov, Y., Vaidman, L.: The two-state vector formalism: an updated review. In: Lect. Notes Phys., vol. 734, pp. 399–447. Springer, New York (2008) and references therein. arXiv:quant-ph/0105101

    Google Scholar 

  7. Aharonov, Y., Popescu, S., Tollaksen, J.: A time-symmetric formulation of quantum mechanics. Phys. Today 63, 27–32 (2010) and references therein

    Article  Google Scholar 

  8. Aharonov, Y., Popescu, S., Tollaksen, J.: Consistent treatments of quantum mechanics Reply. Phys. Today 64, 9–10 (2011)

    Article  Google Scholar 

  9. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–687 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  10. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, New York (2002)

    MATH  Google Scholar 

  11. Unruh, W.G.: Quantum measurement. Ann. N.Y. Acad. Sci. 48, 242–249 (1986)

    Article  ADS  Google Scholar 

  12. Gell-Mann, M., Hartle, J.B.: Time symmetry and asymmetry in quantum mechanics and quantum cosmology. In: Halliwell, J.J., Perez-Mercader, J., Zurek, W. (eds.) Physical Origins of Time Asymmetry 1, pp. 311–345. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  13. Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  14. Wharton, K.B.: Time-symmetric quantum mechanics. Found. Phys. 37, 159–168 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Sutherland, R.I.: Density formalism for quantum theory. Found. Phys. 28, 1157–1190 (1998)

    Article  MathSciNet  Google Scholar 

  16. Sutherland, R.I.: Causally symmetric Bohm model. studies in history and philosophy of science. Part B. Stud. Hist. Philos. Mod. Phys. 39, 782–805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Griffiths, R.B.: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66, 062101 (2002). arXiv:quant-ph/0207015v1

    Article  MathSciNet  ADS  Google Scholar 

  18. Omnés, R.: Localization of relativistic particles. J. Math. Phys. 38, 708–715 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Blencowe, M.: The consistent histories interpretation of quantum fields in curved spacetime. Ann. Phys. 211, 87–111 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  20. Hoyle, F., Narlikar, J.V.: Lectures on Cosmology and Action at a Distance Electrodynamics. World Scientific, New Jersey (1996)

    Google Scholar 

  21. Davies, P.C.W.: A quantum theory of Wheeler-Feynman electrodynamics. Proc. Camb. Philol. Soc. 68, 751–764 (1970)

    Article  ADS  Google Scholar 

  22. Wharton, K.B.: A novel interpretation of the Klein-Gordon equation. Found. Phys. 40, 313–332 (2010). arXiv:0706.4075v3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, Vol. I. Wiley, New York (1977)

    Google Scholar 

  24. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Pearson Education/Prentice Hall, New Jersey (2005)

    Google Scholar 

  25. Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Plenum, New York (1994)

    Book  MATH  Google Scholar 

  26. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations. Springer, New York (1990)

    MATH  Google Scholar 

  27. Thaller, B.: Advanced Visual Quantum Mechanics. Springer, New York (2005)

    Google Scholar 

  28. Nikolić, H.: Quantum mechanics: myths and facts. Found. Phys. 37, 1563–1611 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics, Vol. III. Addison Wesley, Reading (1965)

    Google Scholar 

  30. Dirac, P.A.M.: Relativistic quantum mechanics. Proc. R. Soc. Lond. A 136, 453–464 (1932)

    Article  ADS  Google Scholar 

  31. Schrödinger, E.: Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. 24, 418–428 (1930)

    Google Scholar 

  32. von Neumann, J.: Matematische Grundlagen der Quantenmechanik Springer, Berlin (1932). [English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1955)]

    Google Scholar 

  33. Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1996)

    Google Scholar 

  34. Renninger, M.: Messungen ohne Störung des Messobjekts. Z. Phys. Hadrons Nucl. 158, 417–421 (1960)

    Article  MATH  Google Scholar 

  35. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993)

    Article  ADS  Google Scholar 

  36. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763–4766 (1995)

    Article  ADS  Google Scholar 

  37. Wheeler, J.A.: The “past” and the “delayed-choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, San Francisco (1978)

    Chapter  Google Scholar 

  38. Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science 315, 966–968 (2007)

    Article  ADS  Google Scholar 

  39. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Barut, A.O., Bracken, A.J.: Zitterbewegung and the internal geometry of the electron. Phys. Rev. D 23, 2454–2463 (1981)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

I thank Eleanor G. Rieffel, Kenneth B. Wharton, and Eugene D. Commins for many useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Heaney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heaney, M.B. A Symmetrical Interpretation of the Klein-Gordon Equation. Found Phys 43, 733–746 (2013). https://doi.org/10.1007/s10701-013-9713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9713-9

Keywords

Navigation