Skip to main content

Advertisement

Log in

An artificial immune system algorithm for the resource availability cost problem

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

In this paper, an artificial immune system (AIS) algorithm for the resource availability cost problem (RACP) is presented, in which the total cost of the (unlimited) renewable resources required to complete the project by a pre-specified project deadline should be minimized. The AIS algorithm makes use of mechanisms inspired by the vertebrate immune system and includes different algorithmic components, such as a new fitness function, a probability function for the composition of the capacity lists, and a K-means density function in order to avoid premature convergence. All components are explained in detail and computational results for the RACP are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal R, Tiwari M, Mukherjee S (2007) Artificial immune system based approach for solving resource constraint project scheduling problem. Int J Adv Manuf Technol 34:584–593

    Article  Google Scholar 

  • Alvares-Valdes R, Tamarit J (1989) Heuristic algorithms for resource-constrained project scheduling: a review and empirical analysis. In: Slowinski R, Weglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam

    Google Scholar 

  • Blazewicz J, Lenstra J, Rinnooy Kan A (1983) Scheduling subject to resource constraints: classification and complexity. Discrete Appl Math 5:11–24

    Article  MathSciNet  MATH  Google Scholar 

  • Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

    Article  MATH  Google Scholar 

  • Burgess A, Killebrew J (1962) Variation in activity level on a cyclic arrow diagram. Ind Eng 2:76–83

    Google Scholar 

  • Chandrasekeran M, Asokan P, Kumanan S, Balamurugan T, Nickolas S (2006) Solving job shop scheduling problems using artificial immune system. Int J Adv Manuf Technol 31:580–593

    Article  Google Scholar 

  • Coello C, Rivera D, Cortes N (2003) Use of an artificial immune system for job shop scheduling. Lect Notes Comput Sci 2787:1–10

    Article  Google Scholar 

  • Cooper D (1976) Heuristics for scheduling resource-constrained projects: an experimental investigation. Manage Sci 22:1186–1194

    Article  MATH  Google Scholar 

  • De Castro L, Timmis J (2002) Artificial immune systems: a novel paradigm for pattern recognition. In: Alonso L, Corchado J, Fyfe C (eds) Artificial neural networks in pattern recognition. University of Paisley, Paisley

  • De Reyck B, Herroelen W (1996) On the use of the complexity index as a measure of complexity in activity networks. Eur J Oper Res 91:347–366

    Article  MATH  Google Scholar 

  • Demeulemeester E (1995) Minimizing resource availability costs in time-limited project networks. Manage Sci 10(41):1590–1598

    Article  Google Scholar 

  • Demeulemeester E, Herroelen W (1992) A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Manage Sci 38:1803–1818

    Article  MATH  Google Scholar 

  • Drexl A, Kimms A (2001) Optimization guided lower and upper bounds for the resource investment problem. J Oper Res Soc 52:340–351

    Article  MATH  Google Scholar 

  • Engin O, Döyen A (2004) A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Gener Comput Syst 20:1083–1095

    Article  Google Scholar 

  • Fung G (2001) A comprehensive overview of basic clustering algorithms. http://pages.cs.wisc.edu/gfung/clustering.pdf

  • Hart E, Ross P, Nelson J (1998) Producing robust schedules via an artificial immune system. In: Proceedings of the ICEC ’98

  • Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Herroelen W, De Reyck B, Demeulemeester E (1998) Resource-constrained project scheduling: a survey of recent developments. Comput Oper Res 25:279–302

    Article  MathSciNet  MATH  Google Scholar 

  • Herroelen W, De Reyck B, Demeulemeester E (1999) A classification scheme for project scheduling. In: Weglarz J (eds) Handbook of recent advances in project scheduling. Kluwer, Dordrecht, pp 1–26

    Chapter  Google Scholar 

  • Hsu C-C, Kim D (2005) A new heuristic for the multi-mode resource investment problem. J Oper Res Soc 56:406–413

    Article  MATH  Google Scholar 

  • Icmeli O, Erenguc S, Zappe C (1993) Project scheduling problems: a survey. Int J Oper Prod Manage 13:80–91

    Article  Google Scholar 

  • Kelley J Jr (1963) The critical-path method: resources planning and scheduling. Prentice-Hall, New Jersey

    Google Scholar 

  • Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174:23–37

    Article  MATH  Google Scholar 

  • Kolisch R, Padman R (2001) An integrated survey of deterministic project scheduling. Omega Int J Manage Sci 29(3):249–272

    Article  Google Scholar 

  • Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manage Sci 41:1693–1703

    Article  MATH  Google Scholar 

  • Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project scheduling. Eur J Oper Res 56:370–379

    Article  MATH  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp 281–297

  • Mastor A (1970) An experimental and comparative evaluation of production line balancing techniques. Manage Sci 16:728–746

    Article  MATH  Google Scholar 

  • Möhring R (1984) Minimizing costs of resource requirements in project networks subject to a fixed completion time. Oper Res 32(1):89–120

    Article  MATH  Google Scholar 

  • Montgomery D (2005) Design and analysis of experiments. Wiley, Hoboken

    MATH  Google Scholar 

  • Ong Z, Tay J, Kwoh C (2005) Applying the clonal selection principle to find flexible job-shop schedules. Lect Notes Comput Sci 3627:442–455

    Article  Google Scholar 

  • Özdamar L, Ulusoy G (1995) A survey on the resource-constrained project scheduling problem. IIE Trans 27:574–586

    Article  Google Scholar 

  • Pascoe T (1966) Allocation of resources—CPM. Revue Française de Recherche Opérationnelle 38:31–38

    Google Scholar 

  • Patterson J (1976) Project scheduling: the effects of problem structure on heuristic scheduling. Nav Res Logist 23:95–123

    Article  MathSciNet  MATH  Google Scholar 

  • Ranjbar M, Kianfar F, Shadrokh S (2008) Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm. Appl Math Comput 196:879–888

    Article  MathSciNet  MATH  Google Scholar 

  • Rodrigues S, Yamashita D (2010) An exact algorithm for minimizing resource availability costs in project scheduling. Eur J Oper Res 206:562–568

    Article  MathSciNet  MATH  Google Scholar 

  • Sarafijanovic S, Le Boudec J-Y (2004) An artificial immune system for misbehavior detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal, and memory detectors. Lect Notes Comput Sci 3239(2004):342–356

    Article  Google Scholar 

  • Shadrokh S, Kianfar F (2007) A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. Eur J Oper Res 181:86–101

    Article  MathSciNet  MATH  Google Scholar 

  • Stinson J, Davis E, Khumawala B (1978) Multiple resource-constrained scheduling using branch-and-bound. IIE Trans 10:252–259

    Google Scholar 

  • Valls V, Ballestin F, Quintanilla S (2005) Justification and RCPSP: a technique that pays. Eur J Oper Res 165(2):375–386

    Article  MathSciNet  MATH  Google Scholar 

  • Van Peteghem V, Vanhoucke M (2009) An artificial immune system for the multi-mode resource-constrained project scheduling problems. Lect Notes Comput Sci 5482:85–96

    Article  Google Scholar 

  • Van Peteghem V, Vanhoucke M (2011) An invasive weed optimisation algorithm for the resource availability cost problem. Technical report, Ghent University

  • Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares L (2008) An evaluation of the adequacy of project network generators with systematically sampled networks. Eur J Oper Res 187:511–524

    Article  MATH  Google Scholar 

  • Yamashita D, Armentano V, Laguna M (2006) Scatter search for project scheduling with resource availability cost. Eur J Oper Res 169:623–637

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Vanhoucke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Peteghem, V., Vanhoucke, M. An artificial immune system algorithm for the resource availability cost problem. Flex Serv Manuf J 25, 122–144 (2013). https://doi.org/10.1007/s10696-011-9117-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-011-9117-0

Keywords

Navigation