Skip to main content

Advertisement

Log in

Influence of static magnetic fields on nerve regeneration in vitro

  • Published:
The Environmentalist Aims and scope Submit manuscript

Abstract

Our research involves determining how non-invasive electric and magnetic fields influence neuronal growth in vitro. In previous studies we have shown that pulsed electromagnetic fields (PEMF) as well as direct current (DC) alone stimulate neurite outgrowth from dorsal root ganglion explants [Sisken et al. 1984; Sisken et al. (Restor Neurol Neurosci 1:303–309, 1990); Greenebaum et al. (Bioelectromagnetics 17:293–302, 1996)]. A maximum response was obtained when nerve growth factor (NGF) was also present in the medium. The results of our experiments using static magnetic fields of different strengths are presented below and indicate that fields of high magnetic strength (450–900 gauss) with added NGF stimulate neurite outgrowth comparable to the response obtained with PEMF plus NGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassett, C. A. (1989). Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Critical Reviews in Biomedical Engineering, 17, 451–529

    CAS  Google Scholar 

  • Cadossi, R., & Traina, G. C. (2004). Orthopaedic clinical application of biophysical stimulation in Europe. In P. Rosch & M. Markov (Eds.), Bioelectromagnetic medicine. USA: Dekker Co.

    Google Scholar 

  • Dini, L., & Abbro, L. (2005). Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron, 36(3), 195–217.

    Article  Google Scholar 

  • Eccles, N. (2005). A critical review of randomized controlled trials of static magnets for pain relief. Journal of Alternative and Complementary Medicine, 11, 495–509.

    Article  Google Scholar 

  • Engstrom, S., Markov, M. S., McLean, M. J., Holcomb, R. R., & Markov, J. M. (2002). Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics, 23(6), 475–479.

    Article  CAS  Google Scholar 

  • Greenebaum, B., Sutton, C., Subramanian Vadula, M., Battocletti, J. H., Swiontek, T., DeKeyser, J., & Sisken, B. F. (1996). Effects of pulsed magnetic fields on neurite outgrowth from chick embryos. Bioelectromagnetics, 17, 293–302.

    Article  CAS  Google Scholar 

  • Ishisaka, R., Kanno, T., Inai, Y., Nakahara, H., Akiyama, J., Yoshioka, T., & Utsumi, K. (2000). Effects of a magnetic fields on the various functions of subcellular organelles and cells. Pathophysiology, 7(2), 149–152.

    Article  Google Scholar 

  • Kelleher, M. O., Al-Abri, R. K., Lenihan, D. V., Glasby, M. A. (2006). Use of a static magnetic field to promote recovery after peripheral nerve injury. Journal of Neurosurgery, 105(4), 610–615.

    Google Scholar 

  • Leszczynski, D. (2005). Rapporteur report: Cellular, anaimal and epidemiological studies of the effects of static magnetic fields relevant to human health. Progress in Biophysics and Molecular Biology, 87, 247–253.

    Article  Google Scholar 

  • Levi-Montalcini, R. (1982). Developmental neurobiology and the natural history of nerve growth factor. Annual Review of Neuroscience, 5, 341–362.

    Article  CAS  Google Scholar 

  • Levi-Montalcini, R. (2004). The nerve growth factor and the neuroscience chess board. Progress in Brain Research, 146, 525–527.

    Article  Google Scholar 

  • Lundborg, G. (1989). Nerve injury and repair. Churchill Livingstone Co.

  • Markov, M. S. (1999). Magnetic field dosimetry—biophysical and clinical aspects. In F. Bersani (Ed.), Electricity and magnetism in biology and medicine (pp. 311–313). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • McLean, M. J., Holcomb, R. R.,Wamil, A. W., Pickett, J. D., & Cavopol, A. V. (1995). Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range. Bioelectromagnetics, 16(1), 20–32.

    Article  CAS  Google Scholar 

  • Sato, K., Yamaguchi, H., Miyamoto, H., & Kinouchi, Y. (1992). Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochimica et Biophysica Acta, 1136, 231–238.

    CAS  Google Scholar 

  • Shah, A. H., Fischer, C., Knapp, C. F., & Sisken, B. F. (1998). Determination of neurite outgrowth of dorsal root ganglia using Image Processing. Annual Bioelectromagnetics Society Meeting in St. Pete, FLA June 7–11, 1998, pp. 185–186.

  • Shah, A. H., Fischer, C., Knapp, C. F., & Sisken, B. F. (2004). Quantitation of neurite growth parameters in explant cultures using a new image processing program. Journal of Neuroscience Methods, 136, 123–131.

    Article  Google Scholar 

  • Sisken, B. F., Kanje, M., Lundborg, G., & Kurtz, W. (1990). Pulsed electromagnetic fields stimulate nerve regeneration in␣vitro and in␣vitro. Restorative Neurology and Neuroscience, 1, 303–309.

    Google Scholar 

  • Sisken, B. F., McLeod, B., & Pilla, A. A. (1984) PEMF, direct current and neuronal regeneration: Effect of field geometry and current density. Journal of Bioelectricity, 3, 81–101.

    Google Scholar 

  • Sisken, B. F., & Mullins, R. (1991). The importance of the electric vs magnetic field in studies of neuronal regeneration in␣vitro. Transactions of Bioelectrical Repair and Growth Society, 11, 28.

    Google Scholar 

  • Sisken, B. F., & Smith, S. (1975). The effects of minute direct electrical currents on cultured chick embryo trigeminal ganglia. Journal of Embryology and Experimental Morphology, 33, 29–41.

    CAS  Google Scholar 

  • Sisken, B. F., & Walker, J. (1995). Therapeutic aspects of electromagnetic fields for soft tissue healing. In M. Blank (Ed.), Electromagnetic fields: Biological interactions and mechanisms. The American Chemical Society Series 250 (pp. 277–285). Washington, DC: Amer. Chem. Soc.

  • Tenuzzo, B., Chionna, A., Panzarini, E., Lanubile, R., Tarantino, P., Di Jeso, B., Dwikat, M., & Dini, L. (2006). Biological effects of 6 mT static magnetic fields: a comparative study in different cell type. Bioelectromagnetics, 27, 560–577.

    Article  CAS  Google Scholar 

  • Teodori, L., Albertini, M. C., Uguccioni, F., Falcieri, E., Rocchi, M. B., Battistelli, M., Coluzza, C., Piantanida, G., Bergamaschi, A., Magrini, A., Mucciato, R., & Accorsi, A. (2006). Static magnetic fields affect cell size, shape, orientation, and membrane surface of human glioblastoma cells, as demonstrated by electron, optic, and atomic force microscopy. Cytometry A, 69(2), 75–85.

    Google Scholar 

  • Walker, J., Evans, J. M., Resig, P., Guarnieri, S., Meade, P., & Sisken, B. F. (1994). Enhancement of functional recovery following crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Experimental Neurology, 125, 302–305.

    Article  CAS  Google Scholar 

  • Weintraub, M. I., Wolfe, G. I., & Barohn, R. A. et al. (2003). Static magnetic field therapy for symptomatic diabetic neuropathy. A randomized,double-blind, placebo-controlled trial. Archives of Physical Medicine and Rehabilitation, 84, 736–746.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty F. Sisken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sisken, B.F., Midkiff, P., Tweheus, A. et al. Influence of static magnetic fields on nerve regeneration in vitro. Environmentalist 27, 477–481 (2007). https://doi.org/10.1007/s10669-007-9117-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-007-9117-5

Keywords

Navigation