Skip to main content
Log in

DC Electric Fields Induce Perpendicular Alignment and Enhanced Migration in Schwann Cell Cultures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Schwann cells (SCs) are PNS glia that play numerous support functions including myelination of axons. After PNS injury, SCs facilitate regeneration by phagocytosing cellular debris and providing physical and biochemical cues to guide axon growth. This reparative phenotype suggests SCs could be critical cellular targets for enhancing nerve regeneration. One method for altering cell morphology and motility is the application of direct current (DC) electric fields (EFs). Endogenous EFs have physiologic relevance during embryogenesis and serve as guidance and polarization cues. While much literature exists on EFs and CNS and PNS neurons, the effects of EFs on SCs have not been extensively studied. In this work, cell alignment, migration, and morphology of rat SCs were measured in response to several EF stimulation regimes including constant DC, 50% duty cycle DC and oscillating DC. SCs were found to re-orient perpendicular to field lines and respond to DC EFs as low as 75 mV/mm. EF exposure promoted directed migration, with travel towards the cathode at a mean rate of 7.5 µm/h. The data highlight the utility of EFs in modulating SC morphology, alignment and migration. Results may have implications for using EFs to attract and realign SCs at the site of PNS trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alexander, J. K., B. Fuss, and R. J. Colello. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2:93–103, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arthur-Farraj, P. J., M. Latouche, D. K. Wilton, S. Quintes, E. Chabrol, A. Banerjee, A. Woodhoo, B. Jenkins, M. Rahman, M. Turmaine, G. K. Wicher, R. Mitter, L. Greensmith, A. Behrens, G. Raivich, R. Mirsky, and K. R. Jessen. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonazzi, D., and N. Minc. Dissecting the molecular mechanisms of electrotactic effects. Adv. Wound Care 3:139–148, 2014.

    Article  Google Scholar 

  4. Borgens, R. B. Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91:251–264, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Borgens, R. B., K. R. Robinson, J. W. Vanable, and M. E. McGinnis. Artificially controlling axonal regeneration and development by applied electric fields. In: Electric Fields in Vertebrate Repair. New York: Alan R. Liss, 1989, pp. 164–165.

  6. Borgens, R. B., R. Shi, T. J. Mohr, and C. B. Jaeger. Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurol. 128:41–49, 1994.

    Article  CAS  PubMed  Google Scholar 

  7. Borgens, R., J. Toombs, A. Blight, M. Mcginnis, M. Bauer, W. Widmer, and J. Cook. Effects of applied electric-fields on clinical cases of complete paraplegia in dogs. Restor. Neurol. Neurosci. 5:305–322, 1993.

    CAS  PubMed  Google Scholar 

  8. Borgens, R. B., J. P. Toombs, G. Breur, W. R. Widmer, D. Waters, A. M. Harbath, P. March, and L. G. Adams. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J. Neurotrauma 16:639–657, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Brown, M. J., and L. M. Loew. Electric field directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol. 127:117–128, 1994.

    Article  CAS  PubMed  Google Scholar 

  10. Bunge, R. P. The role of the Schwann cell in trophic support and regeneration. J. Neurol. 242:S19–S21, 1994.

    Article  CAS  PubMed  Google Scholar 

  11. Bunge, R. P., and M. B. Bunge. Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci. 6:499–505, 1983.

    Article  Google Scholar 

  12. Chang, H. F., Y. S. Lee, T. K. Tan, and J. Y. Cheng. Pulsed DC electric field-induced differentiation of cortical neural precursor cells. PLoS ONE 11:e0158133, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cooper, M. S., and R. E. Keller. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl Acad. Sci. U.S.A. 81:160–164, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hall, S. M. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol. Appl. Neurobiol. 12:27–46, 1986.

    Article  CAS  PubMed  Google Scholar 

  15. Hall, S. M. The effect of inhibiting Schwann cell mitosis on the re-innervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol. Appl. Neurobiol. 12:401–414, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, Y. J., J. Samorajski, R. Kreimer, and P. C. Searson. The influence of electric field and confinement on cell motility. PLoS ONE 8:e59447, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaffe, L. F. The role of ionic currents in establishing developmental pattern. Philos. Trans. R. Soc. Lond. B Biol. Sci. 295:553–566, 1981.

    Article  CAS  PubMed  Google Scholar 

  18. Jessen, K. R., and R. Mirsky. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 594:3521–3531, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koppes, A. N., A. L. Nordberg, G. Paolillo, N. Goodsell, H. Darwish, L. Zhang, and D. M. Thompson. Electrical stimulation of Schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng. Part A 20:494–506, 2013.

    PubMed  PubMed Central  Google Scholar 

  20. Koppes, A. N., A. M. Seggio, and D. M. Thompson. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J. Neural Eng. 8:1–13, 2011.

    Article  Google Scholar 

  21. Li, R., Z. Liu, Y. Pan, L. Chen, Z. Zhang, and L. Lu. Peripheral nerve injuries treatment: a systematic review. Cell Biochem. Biophys. 68:449–454, 2014.

    Article  CAS  PubMed  Google Scholar 

  22. Mackinnon, S. E., and A. L. Dellon. Nerve repair and nerve grafts. In: Surgery of the Peripheral Nerve, edited by S. E. Mackinnon. New York: Thieme, 1988.

    Google Scholar 

  23. Martin, J. R., and H. D. Webster. Mitotic Schwann cells in developing nerve: their changes in shape, fine structure, and axon relationships. Dev. Biol. 32:417–431, 1973.

    Article  CAS  PubMed  Google Scholar 

  24. McCaig, C. D. Spinal neurite reabsorption and regrowth in vitro depend on the polarity of an applied electric field. Development 100:31–41, 1987.

    CAS  PubMed  Google Scholar 

  25. McLaughlin, S., and M. M. Poo. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys. J. 34:85–93, 1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nuccitelli, R., and C. A. Erickson. Embryonic cell motility can be guided by physiological electric fields. Exp. Cell Res. 147:195–201, 1983.

    Article  CAS  PubMed  Google Scholar 

  27. Orida, N., and M. Poo. Electrophorectic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature 275:31–35, 1978.

    Article  CAS  PubMed  Google Scholar 

  28. Ozkucur, N., S. Perike, P. Sharma, and R. Funk. Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol. 12:1–13, 2011.

    Article  CAS  Google Scholar 

  29. Pan, L., and R. B. Borgens. Perpendicular organization of sympathetic neurons within a required physiological voltage. Exp. Neurol. 222:161–164, 2010.

    Article  PubMed  Google Scholar 

  30. Pan, L., and R. B. Borgens. Strict perpendicular orientation of neural crest-derived neurons in vitro is dependent on an extracellular gradient of voltage. J. Neurosci. Res. 90:1335–1346, 2012.

    Article  CAS  PubMed  Google Scholar 

  31. Poo, M., J. W. Lam, N. Orida, and A. W. Chao. Electrophoresis and diffusion in the plane of the cell membrane. Biophys. J. 26:1–22, 1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajnicek, A. M., N. A. R. Gow, and C. D. McCaig. Electric field-induced orientation of rat hippocampal neurons in vitro. Exp. Physiol. 77:229–232, 1992.

    Article  CAS  PubMed  Google Scholar 

  33. Rajnicek, A. M., K. R. Robinson, and C. D. McCaig. The direction of neurite growth in a weak DC electric field depends on the substratum: contributions of adhesivity and net surface charge. Dev. Biol. 203:412–423, 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Seggio, A. M., A. Narayanaswamy, B. Roysam, and D. M. Thompson. Self-aligned Schwann cell monolayers demonstrate an inherent ability to direct neurite outgrowth. J. Neural Eng. 7(4):046001, 2010.

    Article  CAS  PubMed  Google Scholar 

  35. Shapiro, S., R. Borgens, R. Pascuzzi, K. Roos, M. Groff, S. Purvines, R. B. Rodgers, S. Hagy, and P. Nelson. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J. Neurosurg. Spine 2:3–10, 2005.

    Article  PubMed  Google Scholar 

  36. Shi, R., and R. B. Borgens. Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202:101–114, 1995.

    Article  CAS  PubMed  Google Scholar 

  37. Siemionow, M., and G. Brzezicki. Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol. 87:141–172, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Son, Y. J., and W. J. Thompson. Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125–132, 1995.

    Article  CAS  PubMed  Google Scholar 

  39. Stump, R. F., and K. R. Robinson. Xenopus neural crest cell migration in an applied electrical field. J. Cell Biol. 97:1226–1233, 1983.

    Article  CAS  PubMed  Google Scholar 

  40. Talat, K., S. Sayers, and N. Chauhan. Effect of applied electric field on astrocytic scar formation after spinal cord injury. In: Electricity and Magnetism in Biology and Medicine, edited by F. Bersani. Boston: Springer, 1999, pp. 887–890.

    Google Scholar 

  41. Yao, L., Y. Li, J. Knapp, and P. Smith. Exploration of molecular pathways mediating electric field-directed Schwann cell migration by RNA-seq. J. Cell. Physiol. 230:1515–1524, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao, L., and L. Yongchao. The role of direct current electric field-guided stem cell migration in neural regeneration. Stem Cell Rev. 12:365–375, 2016.

    Article  Google Scholar 

  43. Zhao, M., J. V. Forrester, and C. D. McCaig. A small physiological electric field orients cell division. Proc. Natl. Acad. Sci. U.S.A. 96:4942–4946, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was completed at the Center for Paralysis Research with funding provided by the State of Indiana. The authors thank Megan Saenger and Bhavani Gopalakrishnan for their assistance with cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Li.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunn, S.J., Lai, A. & Li, J. DC Electric Fields Induce Perpendicular Alignment and Enhanced Migration in Schwann Cell Cultures. Ann Biomed Eng 47, 1584–1595 (2019). https://doi.org/10.1007/s10439-019-02259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02259-4

Keywords

Navigation