Skip to main content
Log in

A Natural Transition Between Equilibrium Patterns of Dislocation Dipoles

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The equilibrium configurations of a row of uniformly distributed dislocation dipoles are first studied. The analysis is then generalised to study dipoles in two-dimensional rectangular periodic lattices. By examining the stability of the equilibrium configurations we find that the system may undergo a natural transition from the Taylor lattice to a row of dipole walls. This bifurcation may be involved in the transition from channel-vein to persistent slip band (PSB) structures in the early stage of metal fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmed, J., Wilkinson, A.J., Roberts, S.G.: Electron channelling contrast imaging characterization of dislocation structures associated with extrusion and intrusion systems and fatigue cracks in copper single crystals. Philos. Mag., A, Phys. Condens. Matter Struct. Defects Mech. Prop. 81(6), 1473–1488 (2001)

    ADS  Google Scholar 

  2. Amodeo, R.J., Ghoniem, N.M.: Dislocation dynamics. 2. Applications to the formation of persistent slip bands, planar arrays and dislocation cells. Phys. Rev. B 41(10), 6968–6976 (1990)

    Article  ADS  Google Scholar 

  3. Basinski, Z.S., Basinski, S.J.: Fundamental-aspects of low amplitude cyclic deformation in face-centered cubic-crystals. Prog. Mater. Sci. 36, 89–148 (1992)

    Article  Google Scholar 

  4. Cai, W., Bulatov, V.V., Chang, J.P., Li, J., Yip, S.: Anisotropic elastic interactions of a periodic dislocation array. Phys. Rev. Lett. 86(25), 5727–5730 (2001)

    Article  ADS  Google Scholar 

  5. Cash, W.D., Cai, W.: Contribution of dislocation dipole structures to the acoustic nonlinearity. J. Appl. Phys. 111(074906), 1–8 (2012)

    Google Scholar 

  6. Cottrell, A.H.: Dislocations and Plastic Flow in Crystals. Clarendon Press, Oxford (1953)

    MATH  Google Scholar 

  7. Hirth, J.P., Lothe, J.: Theories of Dislocations. Krieger, Melbourne (1982)

    Google Scholar 

  8. Laird, C., Charsley, P., Mughrabi, H.: Low-energy dislocation-structures produced by cyclic deformation. Mater. Sci. Eng. 81(1–2), 433–450 (1986)

    Article  Google Scholar 

  9. Lubarda, V.A., Kouris, D.A.: Stress fields due to dislocation walls in infinite and semi-infinite bodies. Mech. Mater. 23(3), 169–189 (1996)

    Article  Google Scholar 

  10. Mughrabi, H.: Microscopic mechanisms of metal fatigue. In: Proc. 5th Int. Conf. on the Strength of Metals and Alloys, vol. 3, pp. 1615–1638. Pergamon, Oxford (1980)

    Google Scholar 

  11. Nabarro, F.R.N.: The mathematical theory of stationary dislocations. Adv. Phys. 1(3), 269 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  12. Neumann, P.: Low-energy dislocation configurations—a possible key to the understanding of fatigue. Mater. Sci. Eng. 81(1–2), 465–475 (1986)

    Article  Google Scholar 

  13. Taylor, G.I.: The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 146, 501–523 (1934)

    Article  ADS  Google Scholar 

  14. Taylor, G.I.: The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 145, 362–384 (1934)

    Article  ADS  MATH  Google Scholar 

  15. Zhu, X.H., Dai, S.Y., Xiang, Y.: Numerical simulation of dynamics of dislocation arrays and long-range stress fields of nonplanar dislocation arrays. Int. J. Plast. 43, 85–100 (2013)

    Article  Google Scholar 

  16. Zhu, Y.: Modelling the transition from channel-veins to psbs in the early stage of fatigue tests. Ph.D. thesis, University of Oxford (2012)

  17. Zhu, Y., Chapman, S.J.: Motion of screw segments in the early stage of fatigue testing. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 589(1), 132–139 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

YZ is supported by EPSRC grant EP/D048400/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichao Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Chapman, S.J. A Natural Transition Between Equilibrium Patterns of Dislocation Dipoles. J Elast 117, 51–61 (2014). https://doi.org/10.1007/s10659-013-9464-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-013-9464-z

Keywords

Mathematics Subject Classification (2010)

Navigation