Skip to main content
Log in

Elastic interaction-induced anisotropic growth of dislocation loop arrays

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The elastic interactions and reactions of dislocations lead to the formation of complex dislocation substructures, which is critical to the strain hardening and fatigue failure. Phase field dislocation dynamics simulations are conducted as a first step to understand the elastic interactions between dislocation loops. When the interloop spacing is small, the elastic interactions with neighboring loops become strong, rendering the edge segments strongly pinned, while allowing for the screw segments to propagate more easily. The interactions are found to result in an anisotropic stress distribution around the dislocation loops, leading to the formation of arrays of long, straight edge dislocations that could act as barriers to subsequent slip. Furthermore, the effect of initial loop size and applied strain rate on the elastic interaction-induced anisotropic pinning effect is investigated and discussed. The results are important for coarse-graining dislocation substructures formation into continuum level models of deformation in crystalline solids.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

Requests for materials and data should be addressed to the corresponding authors.

Code availability

Custom code.

References

  1. H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31(9), 1367–1379 (1983)

    Article  CAS  Google Scholar 

  2. D. An, S. Zaefferer, Formation mechanism of dislocation patterns under low cycle fatigue of a high-manganese austenitic trip steel with dominating planar slip mode. Int. J. Plast 121, 244–260 (2019)

    Article  CAS  Google Scholar 

  3. Y. Kawasaki, T. Takeuchi, Cell structures in copper single crystals deformed in the [001] and [111] axes. Scr. Metall. 14(2), 183–188 (1980)

    Article  CAS  Google Scholar 

  4. G. Zhang, R. Schwaiger, C. Volkert, O. Kraft, Effect of film thickness and grain size on fatigue-induced dislocation structures in cu thin films. Philos. Mag. Lett. 83(8), 477–483 (2003)

    Article  CAS  Google Scholar 

  5. D. Hughes, N. Hansen, The microstructural origin of work hardening stages. Acta Mater. 148, 374–383 (2018)

    Article  CAS  Google Scholar 

  6. N. Grilli, K.G. Janssens, J. Nellessen, S. Sandlobes, D. Raabe, Multiple slip dislo cation patterning in a dislocation-based crystal plasticity finite element method. Int. J. Plast. 100, 104–121 (2018)

    Article  CAS  Google Scholar 

  7. G.I. Taylor, The mechanism of plastic deformation of crystals. Part I—theoretical. Proc. R. Soc. Lond Ser. A 145(855), 362–387 (1934)

    Article  CAS  Google Scholar 

  8. K. Hattar, Deformation structures including twins in nanograined pure metals. in Nanos tructured Metals and Alloys (Elsevier, 2011), pp. 213–242

  9. S. Zheng, D. Zheng, Y. Ni, L. He, Improved phase field model of dislocation inter sections. npj Comput. Mater. 4(1), 1–8 (2018)

    Article  CAS  Google Scholar 

  10. A.H. Zahiri, P. Chakraborty, Y. Wang, L. Cao, Strong strain hardening in ultrafast melt-quenched nanocrystalline cu: the role of fivefold twins. J. Appl. Phys. 126(7), 075103 (2019)

    Article  CAS  Google Scholar 

  11. A.H. Cottrell, Dislocations and Plastic Flow in Crystals, 1953

  12. M. Duesbery, Dislocations in Solids. North Holland, 2002

  13. L. Kubin, B. Devincre, T. Hoc, The deformation stage II of face-centered cubic crystals: fifty years of investigations. Int. J. Mater. Res. 100(10), 1411–1419 (2009)

    Article  CAS  Google Scholar 

  14. L. Laurson, J. Rosti, J. Koivisto, A. Miksic, M.J. Alava, Spatial fluctuations in transient creep deformation. J. Stat. Mech: Theory Exp. 2011(07), P07002 (2011)

    Article  Google Scholar 

  15. N. Koneva, D. Lychagin, L. Trishkina, E. Kozlov, Types of dislocation substructures and stages of stress-strain curves of fcc alloys, in Strength of Metals and Alloys (ICSMA 7) (Elsevier, 1985), pp. 21–26

  16. J. Boutin, J. Dickson, J.-P. Baılon, The cyclic deformation of 70–30 α-brass: internal and effective stresses and dislocation substructures, in Time-Dependent Fracture, (Springer, 1985), pp. 13–26

  17. L. Kubin, Materials Science and Technology: Plastic Deformation and Fracture of Materials, vol 6 mughrabi (1996)

  18. C. Depres, C. Robertson, M. Fivel, Low-strain fatigue in aisi 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles I. Dislocation microstructures and mechanical behavior. Philos. Mag. 84(22), 2257–2275 (2004)

    Article  CAS  Google Scholar 

  19. R. Madec, B. Devincre, L. Kubin, Simulation of dislocation patterns in multislip. Scripta Mater. 47(10), 689–695 (2002)

    Article  CAS  Google Scholar 

  20. M. Shehadeh, H. Zbib, T. De La Diaz Rubia, Modelling the dynamic deformation and patterning in fcc single crystals at high strain rates: dislocation dynamics plasticity analysis. Philos. Mag. 85(15), 1667–1685 (2005)

    Article  CAS  Google Scholar 

  21. O. Dmitrieva, J. Svirina, E. Demir, D. Raabe, Investigation of the internal sub structure of microbands in a deformed copper single crystal: experiments and dislocation dynamics simulation. Modell. Simul. Mater. Sci. Eng. 18(8), 085011 (2010)

    Article  CAS  Google Scholar 

  22. D. Raabe, F. Roters, G. Gottstein, Simulation of the statics of 2d and 3d dislocation networks. Comput. Mater. Sci. 5(1–3), 203–209 (1996)

    Article  CAS  Google Scholar 

  23. B. Devincre, T. Hoc, L. Kubin, Dislocation mean free paths and strain hardening of crystals. Science 320(5884), 1745–1748 (2008)

    Article  CAS  Google Scholar 

  24. L. Kubin, B. Devincre, T. Hoc, Toward a physical model for strain hardening in fcc crystals. Mater. Sci. Eng., A 483, 19–24 (2008)

    Article  CAS  Google Scholar 

  25. Z. Wang, I. Beyerlein, R. LeSar, The importance of cross-slip in high-rate deformation. Modell. Simul. Mater. Sci. Eng. 15(6), 675 (2007)

    Article  Google Scholar 

  26. Y. Cui, G. Po, N. Ghoniem, Size-tuned plastic flow localization in irradiated materials at the submicron scale. Phys. Rev. Lett. 120(21), 215501 (2018)

    Article  CAS  Google Scholar 

  27. Y. Cui, G. Po, P. Srivastava, K. Jiang, V. Gupta, N. Ghoniem, The role of slow screw dislocations in controlling fast strain avalanche dynamics in body-centered cubic metals. Int. J. Plast 124, 117–132 (2020)

    Article  CAS  Google Scholar 

  28. S. Xia, A. El-Azab, Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Modell. Simul. Mater. Sci. Eng. 23(5), 055009 (2015)

    Article  CAS  Google Scholar 

  29. C. Zhou, C. Reichhardt, C.J.O. Reichhardt, I.J. Beyerlein, Dynamic phases, pinning and pattern formation for driven dislocation assemblies. Sci. Rep. 5(1), 1–7 (2015)

    Google Scholar 

  30. S. Sandfeld, M. Zaiser, Pattern formation in a minimal model of continuum dislocation plasticity. Modell. Simul. Mater. Sci. Eng. 23(6), 065005 (2015)

    Article  CAS  Google Scholar 

  31. R. Wei, A. Baker, Observation of dislocation loop arrays in fatigued polycrystalline pure iron. Philos. Mag. 11(113), 1087–1091 (1965)

    Article  CAS  Google Scholar 

  32. Y. Cui, G. Po, N. Ghoniem, Does irradiation enhance or inhibit strain bursts at the submicron scale? Acta Mater. 132, 285–297 (2017)

    Article  CAS  Google Scholar 

  33. Y.S. Chen, W. Choi, S. Papanikolaou, M. Bierbaum, J.P. Sethna, Scaling theory of continuum dislocation dynamics in three dimensions: self-organized fractal pattern formation. Int. J. Plast 46, 94–129 (2013)

    Article  Google Scholar 

  34. M. Koslowski, A.M. Cuitino, M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J. Mech. Phys. Solids 50(12), 2597–2635 (2002)

    Article  Google Scholar 

  35. G. Schoeck, The core structure, recombination energy and peierls energy for dislocations in Al. Philos. Mag. A 81(5), 1161–1176 (2001)

    Article  CAS  Google Scholar 

  36. V. Vitek, M. Mrovec, J. Bassani, Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling. Mater. Sci. Eng. A 365(1–2), 31–37 (2004)

    Article  CAS  Google Scholar 

  37. L. Cao, M. Koslowski, Effect of microstructural uncertainty on the yield stress of nanocrystalline nickel. Acta Mater. 61(4), 1413–1420 (2013)

    Article  CAS  Google Scholar 

  38. L. Cao, A. Sengupta, D. Pantuso, M. Koslowski, Effect of texture and grain size on the residual stress of nanocrystalline thin films. Modell. Simul. Mater. Sci. Eng. 25(7), 075004 (2017)

    Article  Google Scholar 

  39. A. Hunter, R. Zhang, I. Beyerlein, T.C. Germann, M. Koslowski, Dependence of equilibrium stacking fault width in fcc metals on the γ-surface. Modell. Simul. Mater. Sci. Eng. 21(2), 025015 (2013)

    Article  CAS  Google Scholar 

  40. L. Cao, A. Hunter, I.J. Beyerlein, M. Koslowski, The role of partial mediated slip during quasi-static deformation of 3d nanocrystalline metals. J. Mech. Phys. Solids 78, 415–426 (2015)

    Article  CAS  Google Scholar 

  41. L. Cao, M. Koslowski, Rate-limited plastic deformation in nanocrystalline Ni. J. Appl. Phys. 117(24), 244301 (2015)

    Article  CAS  Google Scholar 

  42. Y. Zeng, A. Hunter, I.J. Beyerlein, M. Koslowski, A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces. Int. J. Plast 79, 293–313 (2016)

    Article  Google Scholar 

  43. H. Mori, H. Kimizuka, S. Ogata, Microscopic phase-field modeling of edge and screw dislocation core structures and peierls stresses of bcc iron. J. Jpn. Inst. Met. 75(2), 104–109 (2011)

    Article  CAS  Google Scholar 

  44. X. Peng, N. Mathew, I.J. Beyerlein, K. Dayal, A. Hunter, A 3d phase field dislocation dynamics model for body-centered cubic crystals. Comput. Mater. Sci. 171, 109217 (2020)

    Article  CAS  Google Scholar 

  45. D. Qiu, P. Zhao, C. Shen, W. Lu, D. Zhang, M. Mrovec, Y. Wang, Predicting grain boundary structure and energy in bcc metals by integrated atomistic and phase-field modeling. Acta Mater. 164, 799–809 (2019)

    Article  CAS  Google Scholar 

  46. Y. Zeng, X. Cai, M. Koslowski, Effects of the stacking fault energy fluctuations on the strengthening of alloys. Acta Mater. 164, 1–11 (2019)

    Article  CAS  Google Scholar 

  47. C. Albrecht, A. Hunter, A. Kumar, I.J. Beyerlein, A phase field model for disloca tions in hexagonal close packed crystals. J. Mech. Phys. Solids 137, 103823 (2020)

    Article  CAS  Google Scholar 

  48. I. Beyerlein, A. Hunter, Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics. Philos. Trans. R. Soc. A 374(2066), 20150166 (2016)

    Article  CAS  Google Scholar 

  49. J.P. Hirth, J. Lothe, Theory of dislocations. J. Appl. Mech. 50(2), 476 (1983)

    Article  Google Scholar 

  50. N. Langdon, Explicit expressions for stress field of a circular dislocation loop. Theoret. Appl. Fract. Mech. 33(3), 219–231 (2000)

    Article  Google Scholar 

  51. T. Mura, Micromechanics of Defects in Solids (Springer, New York, 2013)

    Google Scholar 

  52. S. Xu, J.R. Mianroodi, A. Hunter, I.J. Beyerlein, B. Svendsen, Phase-field-based calculations of the disregistry fields of static extended dislocations in fcc metals. Philos. Mag. 99(11), 1400–1428 (2019)

    Article  CAS  Google Scholar 

  53. Y. Zhu, X. Liao, S. Srinivasan, E. Lavernia, Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J. Appl. Phys. 98(3), 034319 (2005)

    Article  CAS  Google Scholar 

  54. J. Douin, F. Pettinari-Sturmel, A. Coujou, Dissociated dislocations in confined plasticity. Acta Mater. 55(19), 6453–6458 (2007)

    Article  CAS  Google Scholar 

  55. E. Martinez, J. Marian, A. Arsenlis, M. Victoria, J. Perlado, Atomistically informed dislocation dynamics in fcc crystals. J. Mech. Phys. Solids 56(3), 869–895 (2008)

    Article  CAS  Google Scholar 

  56. A. Hunter, R. Zhang, I. Beyerlein, The core structure of dislocations and their relationship to the material γ-surface. J. Appl. Phys. 115(13), 134314 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PC, TM, and LC acknowledges the financial support from National Science Foundation-CMMI Mechanics of Materials and Structures Program, under Grant No. 1727428. AH is grateful for support from the Materials Project within the Advanced Simulation and Computing (ASC), Physics and Engineering Model (PEM) Program at Los Alamos National Laboratory. YC is supported by National Natural Science Foundation of China under Grant Nos. 11972208 and 11921002.

Funding

PC, TM, and LC are supported by National Science Foundation-CMMI Mechanics of Materials and Structures Program, under Grant No. 1727428. YC is supported by National Natural Science Foundation of China under Grant No. 11972208 and 11921002.

Author information

Authors and Affiliations

Authors

Contributions

PC conducted the simulations and processed the data under the supervision of LC. All authors discussed the data and wrote the manuscript.

Corresponding authors

Correspondence to Yinan Cui, Abigail Hunter or Lei Cao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Ma, T., Cui, Y. et al. Elastic interaction-induced anisotropic growth of dislocation loop arrays. Journal of Materials Research 36, 3426–3435 (2021). https://doi.org/10.1557/s43578-021-00305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00305-3

Navigation