Skip to main content
Log in

Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plant architectural traits have been reported to impact pest and disease, i.e., attackers, incidence on several crops and to potentially provide alternative, although partial, solutions to limit chemical applications. In this paper, we introduce the major concepts of plant architecture analysis that can be used for investigating plant interactions with attacker development. We briefly review how primary growth, branching and reiteration allow the plant to develop its 3D structure which properties may allow it (or not) to escape or survive to attacks. Different scales are considered: (i) the organs, in which nature, shape and position may influence pest and pathogen attack and development; (ii) the individual plant form, especially the spatial distribution of leaves in space which determines the within-plant micro-climate and the shoot distribution, topological connections which influence the within-plant propagation of attackers; and (iii) the plant population, in which density and spatial arrangement affect the micro-climate gradients within the canopy and may lead to different risks of propagation from plant to plant. At the individual scale, we show how growth, branching and flowering traits combine to confer to every plant species an intrinsic architectural model. However, these traits vary quantitatively between genotypes within the species. In addition, we analyze how they can be modulated throughout plant ontogeny and by environmental conditions, here considered lato sensu, i.e. including climatic conditions and manipulations by humans. Examples from different plant species with various architectural types, in particular for wheat and apple, are provided to draw a comprehensive view of possible plant protection strategies which could benefit from plant architectural traits, their genetic variability as well as their plasticity to environmental conditions and agronomic manipulations. Associations between species and/or genotypes having different susceptibility and form could also open new solutions to improve the tolerance to pest and disease at whole population scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ando, K., Grumet, R., Terpstra, K., Kelly, J. D. (2007). Manipulation of plant architecture to enhance crop disease control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2, N° 26. http://www.cababstractsplus.org/cabreviews.

  • Atger, C., & Edelin, C. (1994). Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Canadian Journal of Botany, 72, 963–975.

    Article  Google Scholar 

  • Baccar, R., Fournier, C., Dornbusch, T., Andrieu, B., Gouache, D., & Robert, C. (2011). Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic-virtual plant model. Annals of Botany, 108, 1179–1194.

    Article  PubMed  Google Scholar 

  • Ballaré, C. L. (1999). Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends in Plant Science, 4, 97–102.

    Article  PubMed  Google Scholar 

  • Barthélémy, D., & Caraglio, Y. (2007). Plant architecture: a dynamic, multilevel and comprehensive approach of plant form, structure and ontogeny. Annals of Botany, 99, 375–407.

    Article  PubMed  Google Scholar 

  • Bassette, C., & Bussière, F. (2008). Partitioning of splash and storage during raindrop impacts on banana leaves. Agricultural and Forest Meteorology, 148, 991–1004.

    Article  Google Scholar 

  • Bedimo, J., Aubert, M., Bieysse, D., Njiayouom, I., Deumeni, J. P., Cilas, C., & Notteghem, J. L. (2007). Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. European Journal of Plant Pathology, 119, 391–400.

    Article  Google Scholar 

  • Bell, A. D. (1991). Plant form, an illustrated guide to flowering plant morphology. Oxford University Press.

  • Berthelot, J., Andrieu, B., & Martre, P. (2012). Light-nitrogen relationships within reproductive wheat canopy are modulated by plant modular organization. European Journal of Agronomy, 42, 11–21.

    Article  CAS  Google Scholar 

  • Bodin-Ferri, M., Costes, E., Quiot, J. B., & Dosba, F. (2002). Systemic spread of plum pox potyvirus (PPV) in Mariana plum GF 8-1 in relation to shoot growth. Plant Pathology, 51, 124–148.

    Google Scholar 

  • Bonhomme, R. (2000). Bases and limits to using ‘degree.day’ units. European Journal of Agronomy, 13, 1–10.

    Article  Google Scholar 

  • Borchert, R., & Honda, H. (1985). Control of development in the bifurcating branch system of Tabeduia rosea: a computer simulation. Botanical Gazette, 145, 184–195.

    Article  Google Scholar 

  • Boss, P. K., Bastow, R. M., Mylne, J. S., & Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell, 16, S18–S31.

    Article  PubMed  CAS  Google Scholar 

  • Bruckler, L., Lafolie, F., Doussan, C., & Bussières, F. (2004). Modeling soil-root water transport with non-uniform water supply and heterogeneous root distribution. Plant and Soil, 260, 205–224.

    Article  CAS  Google Scholar 

  • Bruschi, P., Grossoni, P., & Bussotti, F. (2003). Within- and among-tree variation in leaf morphology of Quercus petraea matt. liebl. natural populations. Trees- structure and function, 17, 164–172.

    Google Scholar 

  • Callaway, R. M., Pennings, S. C., & Richards, C. L. (2003). Phenotypic plasticity and interactions among plants. Ecology, 84, 1115–1128.

    Article  Google Scholar 

  • Calonnec, A., Cartolaro, P., Naulin, J. M., Bailey, D., & Langlais, M. (2008). A host-pathogen simulation model: powdery mildew of grapevine. Plant Pathology, 57, 493–508.

    Article  Google Scholar 

  • Carter, C., & Thornburg, R. W. (2004). Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science, 9, 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Casal, J. J., Fankhauser, C., Coupland, G., & Blazquez, M. A. (2004). Signalling for developmental plasticity. Trends in Plant Science, 9, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Casas, J., & Djemai, I. (2002). Plant canopy architecture and multitrophic interactions. In: T. Tscharnke & B. Hawkins (Eds). Multitrophic interactions. Cambridge University Press.

  • Champagnat, P. (1954). Recherches sur les rameaux anticipés des végétaux ligneux. Revue de Cytologie et de Biologie Végétales X 1–51.

  • Champagnat, P. (1989). Rest and activity in vegetative buds of trees. Annals of Science, 46, 9–26.

    Article  Google Scholar 

  • Chelle, M. (2005). Phylloclimate or the climate perceived by individual plant organs: what is it? How to model it? What for? New Phytologist, 166, 781–790.

    Article  PubMed  Google Scholar 

  • Cieslak, M., Seleznyova, A. N., Prusinkiewicz, P., Hanan, J. (2011). Towards aspect-oriented functional-structural plant modelling. Annals of Botany, 108, SI: 1025–104.1.

    Google Scholar 

  • Cline, M. G. (2000). The role of hormons and apical dominance. New approaches to an old problem in plant development. Physiologia Plantarum, 90, 230–237.

    Article  Google Scholar 

  • Costes, E., & Guédon, Y. (2012). Deciphering the ontogeny of a sympodial tree. Trees- Structure and functions, 26, 865–879.

    Article  Google Scholar 

  • Costes, E., Sinoquet, H., Kelner, J. J., & Godin, C. (2003). Exploring within-tree architectural development of two apple cultivars over 6 years. Annals of Botany, 91, 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Costes, E., Lauri, P. E., & Régnard, J. L. (2006). Tree architecture and production. Horticultural Reviews, 32, 1–60.

    Google Scholar 

  • Costes, E., Smith, C., Renton, M., Guédon, Y., Prusinkiewivz, P., Godin, C., & Mapple, T. (2008). Simulation of apple tree development using mixed statistical and biomechanical models. Functional Plant Biology, 35, 936–950.

    Article  Google Scholar 

  • Crabbé, J. (1987). Aspects particuliers de la morphogénèse caulinaire des végétaux ligneux et introduction à leur étude quantitative. IRSIA (Institut pour l’encouragement de la recherche scientifique pour l’industrie et l’agriculture) Eds. Bruxelles. Belgique.

  • Danjon, F., & Reubens, B. (2008). Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and Soil, 303, 1–34.

    Article  CAS  Google Scholar 

  • De Wit, I., Keulemans, J., & Cook, N. C. (2002). Architectural analysis of 1-year-old apple seedlings according to main shoot growth and sylleptic branching characteristics. Trees- Structure and Functions, 16, 473–478.

    Article  Google Scholar 

  • Didelot, F., Brun, L., & Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology, 56, 1014–1022.

    Article  Google Scholar 

  • Dornbush, T., Baccar, R., Watt, J., Hillier, J., Bertheloot, J., Fournier, C., & Andrieu, B. (2011). Plasticity of winter wheat modulated by sowing date, plant population density and nitrogen fertilisation: dimensions and size of leaf blades, sheaths and internodes in relation to their position on a stem. Field Crops Research, 121, 116–124.

    Article  Google Scholar 

  • Dorr, G., Hanan, J., Adkins, S., Hewitt, A., O'Donnell, C., & Noller, B. (2008). Spray deposition on plant surfaces: a modelling approach. Functional Plant Biology, 35, 988–996.

    Article  Google Scholar 

  • Doust, A. N. (2007). Grass architecture: genetic and environmental control of branching. Current Opinion in Plant Biology, 10, 21–25.

    Article  PubMed  Google Scholar 

  • Erb, M., Lenk, C., Degenhardt, J., & Turlings, T. C. J. (2009). The underestimated role of roots in defense against leaf attackers. Trends in Plant Science, 14, 653–659.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. M. S., & Poethig, R. S. (1995). Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiology, 108, 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Evers, J. B., Vos, J., Chelle, M., Andrieu, B., Fournier, C., & Struik, P. C. (2007). Simulating the effects of localized red / far-red ratio on tillering in spring wheat (Triticum aestivum L.) using a 3D virtual plant model. New Phytologist, 176, 325–336.

    Article  PubMed  Google Scholar 

  • Evers, J. B., van der Kro, A. R., Vos, J., & Struick, P. C. (2011). Understanding shoot branching by modelling form and function. Trends in Plant Science, 16, 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Ferrandino, F. J. (2008). Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores. Phytopathology, 98, 492–503.

    Article  PubMed  CAS  Google Scholar 

  • Finckh, M., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., Munk, L., Nadziak, J., Newton, A. C., de Vallavieille-Pope, C., & Wolfe, M. S. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie, 20, 813–837.

    Article  Google Scholar 

  • Forshey, C. G., Elfving, D. C., Stebbins, R. L. (1992). Training and pruning apple and pear trees. Alexandria (Virginia, USA). American Society for Horticultural Science.

  • Fournier, C., & Andrieu, B. (1999). ADEL-maize: an L-system based model for the integration of growth processes from the organ to the canopy. Application to regulation of morphogenesis by light availability. Agronomie, 19, 313–327.

    Article  Google Scholar 

  • Fumey, D., Lauri, P. E., Guédon, Y., Godin, C., & Costes, E. (2011). How young trees cope with the removal of whole or part of shoots: an analysis of local and distant reactions to pruning in 1-year-old apple trees. American Journal of Botany, 98, 1737–1751.

    Article  PubMed  Google Scholar 

  • Gingras, D., & Boivin, G. (2002). Effect of plant structure, host density and foraging duration on host finding by Trichogramma evanescens (Hymenoptera: Trichogrammatidae). Environmental Entomology, 31, 1153–1157.

    Article  Google Scholar 

  • Godin, C., & Caraglio, Y. (1998). A multiscale model of plant topological structures. Journal of Theoretical Biology, 191, 1–46.

    Article  PubMed  Google Scholar 

  • Godin, C., Costes, E., & Sinoquet, H. (1999). A method for describing plant architecture which integrates topology and geometry. Annals of Botany, 84, 343–357.

    Article  Google Scholar 

  • Godin, C., Costes, E., & Sinoquet, H. (2005). Plant architecture modelling—virtual plants and complex systems. In C. Turnbull (Ed.), Plant architecture and its manipulation (pp. 238–287). UK: Blackwell Publishing.

    Google Scholar 

  • Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun E. A., Pillot, J. P., Letisse, F., Matusova, R., Danoun, S., Portais, J. C., Bouwmeester, H., Bécard, G., Beveridge, C. A., Rameau, C., Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature 11, 455(7210), 189–94.

    Google Scholar 

  • Grechi, I., Sauge, M. H., Sauphanor, B., Hilgert, N., Senoussi, R., & Lescourret, F. (2008). How does winter pruning affect peach tree—Myzus persicae interactions? Entomology Experimental and Applied, 128, 369–379.

    Article  Google Scholar 

  • Gruntman, M., & Novoplansky, A. (2011). Ontogenetic contingency of tolerance mechanisms in response to apical damage. Annals of Botany, 108, 965–973.

    Article  PubMed  Google Scholar 

  • Guédon, Y., Bathélémy, D., Caraglio, Y., & Costes, E. (2001). Pattern analysis in branching and axillary flowering sequences. Journal of Theoretical Biology, 212, 481–520.

    Article  PubMed  Google Scholar 

  • Guédon, Y., Caraglio, Y., Heuret, P., Lebarbier, E., & Meredieu, C. (2007). Analyzing growth components in trees. Journal of Theoretical Biology, 248, 418–447.

    Article  PubMed  Google Scholar 

  • Guitton, B., Kelner, J. J., Velasco, R., Gardiner, S., Chagné, D., & Costes, E. (2012). Genetic control of biennal bearing in apple. Journal of Experimental Botany, 30, 1–19.

    Google Scholar 

  • Hackett, W. P. (1985). Juvenility, maturation and rejuvenation in woody plants. In Janick, J., Ed. Horticultural reviews, 7, 109–115.

  • Hallé, F., & Ng, F. S. P. (1981). Crown construction in mature Dipterocarp trees. Malaysian Forester, 44, 222–223.

    Google Scholar 

  • Hallé, F., Oldeman, R. A. A., & Tomlinson, P. B. (1978). Tropical trees and forests. Berlin: Springer.

    Book  Google Scholar 

  • Hanan, J., Prunsinkiewicz, P., Zalucki, M., & Skirvin, D. (2002). Simulation of insect movement with respect to plant architecture and morphogenesis. Computers and Electronics in Agriculture, 35, 255–269.

    Article  Google Scholar 

  • Hanba, Y. T., Kogami, H., & Terashima, I. (2002). The effect of growth irradiance on leaf anatomy and photosynthesis in acer species differing in light demand. Plant, Cell & Environment, 25, 1021–1030.

    Article  Google Scholar 

  • Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321, 153–187.

    Article  CAS  Google Scholar 

  • Hu, D., & Scorza, R. (2009). Analysis of the ‘A72’ peach tree growth habit and its inheritance in progeny obtained from crosses of ‘A72’ with columnar peach trees. Journal of the American Society for Horticultural Science, 134, 236–243.

    Google Scholar 

  • Izaguirre, M. M., Mazza, C. A., Biondini, M., Baldwin, I. T., & Ballare, C. L. (2006). Remote sensing of future competitors: impacts on plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 103, 187170–187174.

    Article  CAS  Google Scholar 

  • Kang, M. Z., Heuvelink, E., Carvalho, S. M. P., & de Reffye, P. (2012). A virtual plant that responds to the environment like a real one: the case for chrysanthemum. New Phytologist, 195, 384–395.

    Article  PubMed  Google Scholar 

  • Kelly, D., & Sork, V. L. (2002). Mast seeding in perennial plants: why, how, where? Annual Review of Ecology and Systematics, 33, 427–447.

    Article  Google Scholar 

  • Kiær, L. P., Skovgaard, I. M., & Østergård, H. (2009). Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Research, 114, 361–373.

    Article  Google Scholar 

  • Kührt, U., Samietz, J., Höhn, H., & Dorn, S. (2006). Modelling the phenology of codling moth: influence of habitat and thermoregulation. Agriculture, Ecosystems and Environment, 117, 29–38.

    Article  Google Scholar 

  • Lachaud, S., Catesson, A. M., & Bonnemain, J. L. (1999). Structure and functions of the vascular cambium. Compte-rendus de l’Académie des Sciences, série III- Sciences de la Vie-Life Sciences, 322, 633–650.

    CAS  Google Scholar 

  • Lang, G. A., Early, J. D., Martin, G. C., & Darnell, R. L. (1987). Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience, 22, 371–377.

    Google Scholar 

  • Langellotto, G. A., & Denno, R. F. (2004). Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia, 139, 1–10.

    Article  PubMed  Google Scholar 

  • Lapins, K. O. (1974). Spur type growth habit in 60 apple progenies. Journal of the American Society for Horticultural Science, 99, 568–572.

    Google Scholar 

  • Lauri, P. É., & Térouanne, É. (1991). Elements for a morphometric approach to plant-growth and flowering—case of tropical species in the Leeuwenberg model. Canadian Journal of Botany, 69, 2095–2112.

    Article  Google Scholar 

  • Lauri, P. É., & Térouanne, É. (1995). Analyse de la croissance primaire de rameaux de pommier (Malus x domestica Borkh.) au cours d’une saison de végétation. Canadian Journal of Botany, 73, 1471–1489.

    Article  Google Scholar 

  • Lauri, P. É., Térouanne, É., Lespinasse, J. M., Regnard, J. L., & Kelner, J. J. (1995). Genotypic differences in the axillary bud growth and fruiting pattern of apple fruiting branches over several years—an approach to regulation of fruit bearing. Scientia Horticulturae, 64, 264–281.

    Article  Google Scholar 

  • Lawton, J. H. (1983). Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology, 28, 23–39.

    Article  Google Scholar 

  • Leca, A., Parisi, L., Lacointe, A., & Saudreau, M. (2011). Comparison of Penman-Monteith and non-linear energy balance approaches for estimating leaf wetness duration and apple scab infection. Agricultural and Forest Meteorology, 151, 1158–1162.

    Article  Google Scholar 

  • Lecompte, F., Ozier-Lafontaine, H., & Pages, L. (2001). The relationships between static and dynamic variables in the description of root growth. Consequences for field interpretation of rooting variability. Plant and Soil, 236, 19–31.

    Article  CAS  Google Scholar 

  • Leyser, O. (2009). The control of shoot branching: an example of plant information processing. Plant, Cell & Environment, 32, 694–703.

    Article  CAS  Google Scholar 

  • Lindenmayer, A. (1968). Mathematical models for cellular interaction in development, part I and II. Journal of Theoretical Biology, 18, 280–315.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., & Thornburg, R. W. (2012). Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. The Plant Journal, 70, 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Lockard, R. G., & Schneider, G. W. (1981). Stock and scion growth relationships and the dwarfing mechanism in apple. In: J. Janick Ed. Horticultural Reviews, 3, 315–75.

  • Lopez, G., Favreau, R. R., Smith, C., Costes, E., Prusinkiewicz, P., & DeJong, T. M. (2008). Integrating simulation of architectural development and source-sink behaviour of peach trees by incorporating Markov models and physiological organ functions sub-models into L-Peach. Functional Plant Biology, 35, 761–771.

    Article  Google Scholar 

  • Louarn, G., Andrieu, B., & Giauffret, C. (2010). A size-mediated effect can compensate for transient chilling stress affecting maize (Zea mays) leaf extension. New Phytologist, 187, 106–118.

    Article  PubMed  Google Scholar 

  • Lovell, D. J., Parker, S. R., Hunter, T., Royle, D. J., & Coker, R. R. (1997). Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathology, 46, 126–138.

    Article  Google Scholar 

  • MacHardy, W. E. (1996). Apple Scab: Biology, Epidemiology and Management. Cambridge University Press.

  • Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., Rapidel, B., de Tourdonnet, S., & Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 29, 43–62.

    Article  Google Scholar 

  • Marquis, R. J. (1996). Plant architecture, sectoriality and plant tolerance to herbivores. Vegetatio, 127, 85–97.

    Article  Google Scholar 

  • Monselise, S. P., & Goldschmidt, E. E. (1982). Alternate bearing in fruit trees. Horticultural Reviews, 4, 128–173.

    Google Scholar 

  • Moulia, B., & Fournier, M. (2009). The power and control of gravitropic movements in plants: a biomechanical and systems biology view. Journal of Experimental Botany, 60, 461–486.

    Article  PubMed  CAS  Google Scholar 

  • Moulia, B., Loup, C., Chartier, M., Allirand, J. M., & Edelin, C. (1999). Dynamics of architectural development of isolated plants of maize (Zea mays L.), in a non-limiting environment: the branching potential of modern maize. Annals of Botany, 84, 645–656.

    Article  Google Scholar 

  • Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell, 14, S111–S130.

    PubMed  CAS  Google Scholar 

  • Mundt, C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381–410.

    Article  PubMed  CAS  Google Scholar 

  • Nanda, R., Bhargava, S. C., & Rawson, H. M. (1995). Effect of sowing date on rates of leaf appearance, final leaf numbers and areas in Brassica campestris, B. juncea, B. napus & B. carinata. Field Crops Research, 42, 125–134.

    Article  Google Scholar 

  • Ney, B., Bancal, M. O., Bancal, P., Bingham, I. J., Foulkes, J., Gouache, D., Paveley, N., & Smith, J. (2012). Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses. European Journal of Plant Pathology, 1–20.

  • Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692.

    Article  PubMed  CAS  Google Scholar 

  • Nozeran, R. (1984). Integration of organismal development. In P. W. Barlow & D. J. Carr (Eds.), Positional controls in plant development (pp. 375–401).

    Google Scholar 

  • Oldeman, R. A. A. (1974). L’architecture de la forêt guyanaise. Mémoires 73, Orstom, Paris, France.

  • Orians, C. M., & Jones, C. G. (2001). Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. Oikos, 94, 493–504.

    Article  Google Scholar 

  • Pagès, L. (2002) Modelling root system architecture. In: Weisel, Y. , Eshel, A. , Kafkafi, U. Eds Plant roots: the hidden half. (pp 175–186) 3rd edn. New York.

  • Pagès, L., Asseng, S., Pellerin, S., & Diggle, A. (2000). Modelling root system growth and architecture. In A. L. Smit et al. (Eds.), Root methods, a handbook (pp. 113–146). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Parent, B., Turc, O., Gibon, Y., Stitt, M., & Tardieu, F. (2010). Modelling temperature-compensated physiological rates, based on the coordination of responses to temperature of developmental processes. Journal of Experimental Botany, 61, 2057–2069.

    Article  PubMed  CAS  Google Scholar 

  • Poethig, R. S. (1990). Phase change and the regulation of shoot morphogenesis in plants. Science, 250, 923–930.

    Article  PubMed  CAS  Google Scholar 

  • Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., & Godin, C. (2008). OpenAlea: a visual programming and component-based software platform for plant modelling. Functional Plant Biology, 35, 751–760.

    Article  Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., & Weis, A. E. (1980). Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11, 41–65.

    Article  Google Scholar 

  • Prioul, S., Frankewitz, A., Deniot, G., Morin, G., & Barangeret, A. (2004). Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theoretical and Applied Genetics, 108, 1322–1334.

    Article  PubMed  CAS  Google Scholar 

  • Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. New York: Springer Verlag.

    Book  Google Scholar 

  • Randlkofer, B., Obermaier, E., Casas, J., & Meiners, T. (2010). Connectivity counts: disentangling effects of vegetation structure elements on the searching movement of a parasitoid. Ecological Entomology, 35, 446–455.

    Google Scholar 

  • Renton, M., Guédon, Y., Godin, C., & Costes, E. (2006). Similarities and gradients in growth unit branching patterns during tree ontogeny based on a stochastic approach in ‘Fuji’ apple trees. Journal of Experimental Botany, 57, 3131–3143.

    Article  PubMed  CAS  Google Scholar 

  • Riihimäki, J., Vehviläinen, H., Kaitaniemi, P., & Koricheva, J. (2006). Host tree architecture mediates the effect of predators on herbivore survival. Ecological Entomology, 31, 227–235.

    Article  Google Scholar 

  • Robert, C., Bancal, M. O., & Lannou, C. (2004). Wheat leaf rust uredospore production on adult plants: influence of leaf nitrogen content and Septoria tritici blotch. Phytopathology, 94, 712–721.

    Article  PubMed  Google Scholar 

  • Roberts, A. G., Santa Cruz, S., Roberts, I. M., Prior, D. A. M., Turgeon, R., & Oparka, K. J. (1997). Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. The Plant Cell, 9, 1381–1396.

    PubMed  CAS  Google Scholar 

  • Roda, A., Nyrop, J., & English-Loeb, G. (2003). Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Experimental and Applied Acarology, 29, 193–211.

    Article  CAS  Google Scholar 

  • Sabatier, S., & Barthélémy, D. (1999). Growth dynamics and morphology of annual shoots, according to their architectural position, in young Cedrus atlantica (Endl.) Manetti,ex Carrière, (Pinaceae). Annals of Botany, 84, 387–392.

    Article  Google Scholar 

  • Sachs, T. (1999). ‘Node counting’: an internal control of balanced vegetative and reproductive development. Plant, Cell & Environment, 22, 757–766.

    Article  Google Scholar 

  • Saha, P. K., Nath, P., & Chatterjee, M. L. (2001). Effect of intercropping and spacing of lentil and tomato on the incidence of insect-pest infestation. Annals of Plant Protection Sciences, 9, 311–313.

    Google Scholar 

  • Sapoukhina, N., Durel, C. E., & Le Cam, B. (2009). Spatial deployment of gene-for-gene resistance governs evolution and spread of pathogen populations. Theoretical Ecology, 2, 229–238.

    Article  Google Scholar 

  • Segura, V., Cilas, C., & Costes, E. (2008). Dissecting apple tree architecture into genetic, ontogenetic and environmental effects. New Phytologist, 178, 302–314.

    Article  PubMed  Google Scholar 

  • Selas, V. (1997). Cyclic population fluctuations of herbivores as an effect of cyclic seed cropping of plants: the mast depression hypothesis. Oikos, 80, 257–268.

    Article  Google Scholar 

  • Seleznyova, A., Thorp, G., White, M., Tustin, S., & Costes, E. (2003). Structural development of branches of ‘Royal Gala’ apple grafted on different rootstock/interstock combinations. Annals of Botany, 91, 1–8.

    Article  Google Scholar 

  • Simon, S., Lauri, P. É., Brun, L., Defrance, H., & Sauphanor, B. (2006). Does manipulation of fruit-tree architecture affect the development of pests and pathogens? A case study in an organic apple orchard. The Journal of Horticultural Science and Biotechnology, 81, 765–773.

    Google Scholar 

  • Simon, S., Sauphanor, B., & Lauri, P. É. (2007). Control of fruit tree pests through manipulation of tree architecture. Pest Technology, 1, 33–37.

    Google Scholar 

  • Simon, S., Morel, K., Durand, E., Brevalle, G., Girard, T., & Lauri, P. É. (2012). Aphids at crossroads: when branch architecture alters aphid infestation patterns in the apple tree. Trees—Structure and Functions, 26, 273–282.

    Article  Google Scholar 

  • Sinoquet, H., Moulia, B., & Bonhomme, R. (1991). Estimating the three-dimensional geometry of a maize crop as an input of radiation models: comparison between three-dimensional digitising and plant profiles. Agricultural and Forest Meteorology, 55, 233–249.

    Article  Google Scholar 

  • Skirvin, D. (2004). Virtual plant models of predatory mite movement in complex plant canopies. Ecological Modelling, 171, 301–313.

    Article  Google Scholar 

  • Skirvin, D., & Fenlon, J. (2003). Of mites and movement: the effects of plant connectedness and temperature on movement of Phytoseiulus persimilis. Biological Control, 27, 242–250.

    Article  Google Scholar 

  • Slafer, G. A., & Rawson, H. M. (1995). Photoperiod x temperature interactions in contrasting wheat genotypes: time to heading and final leaf number. Field Crops Research, 44, 73–83.

    Article  Google Scholar 

  • Smit, A. L., George, E., & Groenwold, J. (2000). Root observations and measurements at (transparent) interface with soil. In A. L. Smit et al. (Eds.), Root methods, a handbook (pp. 113–146). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Stecconi, M., Puntieri, J. G., & Barthélémy, D. (2010). An architectural approach to the growth forms of Nothofagus pumilio (Nothofagaceae) along an altitudinal gradient. Botany-Botanique, 88, 699–709.

    Article  Google Scholar 

  • Sultan, S. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537–542.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A. (2002). Influence of shoot architectural position on shoot growth and branching patterns in Cleyera japonica. Tree Physiology, 22, 885–890.

    Article  PubMed  Google Scholar 

  • Sylvester, A. W., Parker-Clark, V., & Murray, G. A. (2001). Leaf shape and anatomy as indicators of phase change in the grasses: comparison of maize, rice, and bluegrass. American Journal of Botany, 88, 2157–2167.

    Article  PubMed  CAS  Google Scholar 

  • Tan, F. C., & Swain, S. M. (2006). Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum, 128, 8–17.

    Article  CAS  Google Scholar 

  • Tisne, S., Reymond, M., Vile, D., Fabre, J., Dauzat, M., Koornneef, M., & Granier, C. (2008). Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiology, 148, 1117–1127.

    Article  PubMed  CAS  Google Scholar 

  • Vallavieille-Pope, C. (2004). Management of disease resistance diversity of cultivars of a species in single fields: controlling epidemics. Compte Rendus Biologies, 327, 611–620.

    Article  Google Scholar 

  • van Dam, N. M., & Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. Journal of Ecology, 99, 77–88.

    Article  Google Scholar 

  • van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  CAS  Google Scholar 

  • Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., & de Visser, P. H. B. (2009). Functional-structural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 61, 2101–2115.

    Article  PubMed  CAS  Google Scholar 

  • Watson, M. A., Geber, M. A., & Jones, C. S. (1995). Ontogenetic contingency and the expression of plant plasticity. Trends in Ecology & Evolution, 10, 474–475.

    Article  Google Scholar 

  • White, J. (1979). The plant as a metapopulation. Annual Review of Ecological Systems, 10, 109–145.

    Article  Google Scholar 

  • Willaume, M., Lauri, P. É., & Sinoquet, H. (2004). Light interception in apple trees influenced by canopy architecture manipulation. Trees—Structure and Function, 18, 705–713.

    Article  Google Scholar 

  • Zotz, G., Wilhelm, K., & Becker, A. (2011). Heteroblasty—a review. The Botanical Review, 77, 109–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Costes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costes, E., Lauri, P.E., Simon, S. et al. Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks. Eur J Plant Pathol 135, 455–470 (2013). https://doi.org/10.1007/s10658-012-0158-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0158-3

Keywords

Navigation