Skip to main content

Advertisement

Log in

Transitioning from Idiopathic to Explainable Autoimmune Hepatitis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Autoimmune hepatitis lacks an identifiable cause, and its diagnosis requires the exclusion of etiologically defined diseases that resemble it. Insights into its pathogenesis are moving autoimmune hepatitis from an idiopathic to explainable disease, and the goal of this review is to describe the insights that are hastening this transition. Two types of autoimmune hepatitis are justified by serological markers, but they also have distinctive genetic associations (DRB1 and DQB1 genes) and autoantigens. DRB1 alleles are the principal susceptibility factors in white adults, and a six amino acid sequence encoded in the antigen-binding groove of class II molecules of the major histocompatibility complex can influence the selection of autoantigens. Polymorphisms, including variants of SH2B3 and CARD10 genes, may affect immune reactivity and disease severity. The cytochrome mono-oxygenase, CYP2D6, is the autoantigen associated with type 2 autoimmune hepatitis, and it shares homologies with multiple viruses that might promote self-intolerance by molecular mimicry. Chemokines, especially CXCL9 and CXCL10, orchestrate the migration of effector cells to sites of injury and are associated with disease severity. Cells of the innate and adaptive immune responses promote tissue damage, and possible deficiencies in the number and function of regulatory T cells may facilitate the injurious process. Receptor-mediated apoptosis is the principal mechanism of hepatocyte loss, and cell-mediated and antibody-dependent mechanisms of cytotoxicity also contribute. Insights that explain autoimmune hepatitis will allow triggering exogenous antigens to be characterized, risk management to be improved, prognostic indices to be refined, and site-specific therapeutic interventions to emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–2213.

    Article  CAS  PubMed  Google Scholar 

  2. Kogan J, Safadi R, Ashur Y, Shouval D, Ilan Y. Prognosis of symptomatic versus asymptomatic autoimmune hepatitis: a study of 68 patients. J Clin Gastroenterol. 2002;35:75–81.

    Article  PubMed  Google Scholar 

  3. Burgart LJ, Batts KP, Ludwig J, Nikias GA, Czaja AJ. Recent-onset autoimmune hepatitis. Biopsy findings and clinical correlations. Am J Surg Pathol. 1995;19:699–708.

    Article  CAS  PubMed  Google Scholar 

  4. Czaja AJ, Carpenter HA, Santrach PJ, Moore SB, Homburger HA. The nature and prognosis of severe cryptogenic chronic active hepatitis. Gastroenterology. 1993;104:1755–1761.

    CAS  PubMed  Google Scholar 

  5. Kaymakoglu S, Cakaloglu Y, Demir K, et al. Is severe cryptogenic chronic hepatitis similar to autoimmune hepatitis? J Hepatol. 1998;28:78–83.

    Article  CAS  PubMed  Google Scholar 

  6. Czaja AJ. Cryptogenic chronic hepatitis and its changing guise in adults. Dig Dis Sci. 2011;56:3421–3438.

    Article  PubMed  Google Scholar 

  7. Nikias GA, Batts KP, Czaja AJ. The nature and prognostic implications of autoimmune hepatitis with an acute presentation. J Hepatol. 1994;21:866–871.

    Article  CAS  PubMed  Google Scholar 

  8. Kessler WR, Cummings OW, Eckert G, et al. Fulminant hepatic failure as the initial presentation of acute autoimmune hepatitis. Clin Gastroenterol Hepatol. 2004;2:625–631.

    Article  PubMed  Google Scholar 

  9. Fujiwara K, Yasui S, Tawada A, et al. Autoimmune fulminant liver failure in adults: experience in a Japanese center. Hepatol Res. 2011;41:133–141.

    Article  PubMed  Google Scholar 

  10. Stravitz RT, Lefkowitch JH, Fontana RJ, et al. Autoimmune acute liver failure: proposed clinical and histological criteria. Hepatology. 2011;53:517–526.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Czaja AJ. Acute and acute severe (fulminant) autoimmune hepatitis. Dig Dis Sci. 2013;58:897–914.

    Article  CAS  PubMed  Google Scholar 

  12. Czaja AJ, Carpenter HA. Sensitivity, specificity, and predictability of biopsy interpretations in chronic hepatitis. Gastroenterology. 1993;105:1824–1832.

    CAS  PubMed  Google Scholar 

  13. Carpenter HA, Czaja AJ. The role of histologic evaluation in the diagnosis and management of autoimmune hepatitis and its variants. Clin Liver Dis. 2002;6:685–705.

    Article  PubMed  Google Scholar 

  14. Singh R, Nair S, Farr G, Mason A, Perrillo R. Acute autoimmune hepatitis presenting with centrizonal liver disease: case report and review of the literature. Am J Gastroenterol. 2002;97:2670–2673.

    Article  PubMed  Google Scholar 

  15. Okano N, Yamamoto K, Sakaguchi K, et al. Clinicopathological features of acute-onset autoimmune hepatitis. Hepatol Res. 2003;25:263–270.

    Article  PubMed  Google Scholar 

  16. Misdraji J, Thiim M, Graeme-Cook FM. Autoimmune hepatitis with centrilobular necrosis. Am J Surg Pathol. 2004;28:471–478.

    Article  PubMed  Google Scholar 

  17. Hofer H, Oesterreicher C, Wrba F, Ferenci P, Penner E. Centrilobular necrosis in autoimmune hepatitis: a histological feature associated with acute clinical presentation. J Clin Pathol. 2006;59:246–249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Feld JJ, Dinh H, Arenovich T, et al. Autoimmune hepatitis: effect of symptoms and cirrhosis on natural history and outcome. Hepatology. 2005;42:53–62.

    Article  PubMed  Google Scholar 

  19. Ludwig J, Czaja AJ, Dickson ER, LaRusso NF, Wiesner RH. Manifestations of nonsuppurative cholangitis in chronic hepatobiliary diseases: morphologic spectrum, clinical correlations and terminology. Liver. 1984;4:105–116.

    Article  CAS  PubMed  Google Scholar 

  20. Czaja AJ, Carpenter HA. Autoimmune hepatitis with incidental histologic features of bile duct injury. Hepatology. 2001;34:659–665.

    Article  CAS  PubMed  Google Scholar 

  21. Czaja AJ, Muratori P, Muratori L, Carpenter HA, Bianchi FB. Diagnostic and therapeutic implications of bile duct injury in autoimmune hepatitis. Liver Int. 2004;24:322–329.

    Article  PubMed  Google Scholar 

  22. Czaja AJ. Behavior and significance of autoantibodies in type 1 autoimmune hepatitis. J Hepatol. 1999;30:394–401.

    Article  CAS  PubMed  Google Scholar 

  23. Czaja AJ. Autoantibody-negative autoimmune hepatitis. Dig Dis Sci. 2012;57:610–624.

    Article  CAS  PubMed  Google Scholar 

  24. Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Immunologic features and HLA associations in chronic viral hepatitis. Gastroenterology. 1995;108:157–164.

    Article  CAS  PubMed  Google Scholar 

  25. Loria P, Lonardo A, Leonardi F, et al. Non-organ-specific autoantibodies in nonalcoholic fatty liver disease: prevalence and correlates. Dig Dis Sci. 2003;48:2173–2181.

    Article  PubMed  Google Scholar 

  26. Adams LA, Lindor KD, Angulo P. The prevalence of autoantibodies and autoimmune hepatitis in patients with nonalcoholic fatty liver disease. Am J Gastroenterol. 2004;99:1316–1320.

    Article  CAS  PubMed  Google Scholar 

  27. Czaja AJ. Drug-induced autoimmune-like hepatitis. Dig Dis Sci. 2011;56:958–976.

    Article  CAS  PubMed  Google Scholar 

  28. Czaja AJ. Performance parameters of the conventional serological markers for autoimmune hepatitis. Dig Dis Sci. 2011;56:545–554.

    Article  CAS  PubMed  Google Scholar 

  29. Strettell MD, Donaldson PT, Thomson LJ, et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–2035.

    Article  CAS  PubMed  Google Scholar 

  30. Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol. 2008;6:379–388.

    Article  CAS  PubMed  Google Scholar 

  31. de Boer YS, van Gerven NM, Zwiers A, et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology. 2014;147:443 e445–452 e445.

    Google Scholar 

  32. van Gerven NM, de Boer YS, Zwiers A, et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015. doi:10.1038/gene.2014.82.

    PubMed  Google Scholar 

  33. Czaja AJ. Understanding the pathogenesis of autoimmune hepatitis. Am J Gastroenterol. 2001;96:1224–1231.

    Article  CAS  PubMed  Google Scholar 

  34. Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol. 2007;1:113–128.

    Article  CAS  PubMed  Google Scholar 

  35. Vergani D, Mieli-Vergani G. Aetiopathogenesis of autoimmune hepatitis. World J Gastroenterol. 2008;14:3306–3312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Longhi MS, Ma Y, Mieli-Vergani G, Vergani D. Aetiopathogenesis of autoimmune hepatitis. J Autoimmun. 2010;34:7–14.

    Article  CAS  PubMed  Google Scholar 

  37. Liberal R, Longhi MS, Mieli-Vergani G, Vergani D. Pathogenesis of autoimmune hepatitis. Best Prac Res Clin Gastroenterol. 2011;25:653–664.

    Article  CAS  Google Scholar 

  38. Alvarez F, Berg PA, Bianchi FB, et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol. 1999;31:929–938.

    Article  CAS  PubMed  Google Scholar 

  39. Bittencourt PL, Goldberg AC, Cancado EL, et al. Genetic heterogeneity in susceptibility to autoimmune hepatitis types 1 and 2. Am J Gastroenterol. 1999;94:1906–1913.

    Article  CAS  PubMed  Google Scholar 

  40. Czaja AJ, Souto EO, Bittencourt PL, et al. Clinical distinctions and pathogenic implications of type 1 autoimmune hepatitis in Brazil and the United States. J Hepatol. 2002;37:302–308.

    Article  PubMed  Google Scholar 

  41. Czaja AJ. Autoimmune hepatitis in diverse ethnic populations and geographical regions. Expert Rev Gastroenterol Hepatol. 2013;7:365–385.

    Article  CAS  PubMed  Google Scholar 

  42. Pando M, Larriba J, Fernandez GC, et al. Pediatric and adult forms of type I autoimmune hepatitis in Argentina: evidence for differential genetic predisposition. Hepatology. 1999;30:1374–1380.

    Article  CAS  PubMed  Google Scholar 

  43. Vergani D, Choudhuri K, Bogdanos DP, Mieli-Vergani G. Pathogenesis of autoimmune hepatitis. Clin Liver Dis. 2002;6:727–737.

    Article  PubMed  Google Scholar 

  44. Czaja AJ, Manns MP. The validity and importance of subtypes in autoimmune hepatitis: a point of view. Am J Gastroenterol. 1995;90:1206–1211.

    CAS  PubMed  Google Scholar 

  45. Homberg JC, Abuaf N, Bernard O, et al. Chronic active hepatitis associated with antiliver/kidney microsome antibody type 1: a second type of “autoimmune” hepatitis. Hepatology. 1987;7:1333–1339.

    Article  CAS  PubMed  Google Scholar 

  46. Czaja AJ, Manns MP, Homburger HA. Frequency and significance of antibodies to liver/kidney microsome type 1 in adults with chronic active hepatitis. Gastroenterology. 1992;103:1290–1295.

    CAS  PubMed  Google Scholar 

  47. Gregorio GV, Portmann B, Reid F, et al. Autoimmune hepatitis in childhood: a 20-year experience. Hepatology. 1997;25:541–547.

    Article  CAS  PubMed  Google Scholar 

  48. Targan SR, Landers C, Vidrich A, Czaja AJ. High-titer antineutrophil cytoplasmic antibodies in type-1 autoimmune hepatitis. Gastroenterology. 1995;108:1159–1166.

    Article  CAS  PubMed  Google Scholar 

  49. Zauli D, Ghetti S, Grassi A, et al. Anti-neutrophil cytoplasmic antibodies in type 1 and 2 autoimmune hepatitis. Hepatology. 1997;25:1105–1107.

    Article  CAS  PubMed  Google Scholar 

  50. Martini E, Abuaf N, Cavalli F, et al. Antibody to liver cytosol (anti-LC1) in patients with autoimmune chronic active hepatitis type 2. Hepatology. 1988;8:1662–1666.

    Article  CAS  PubMed  Google Scholar 

  51. Abuaf N, Johanet C, Chretien P, et al. Characterization of the liver cytosol antigen type 1 reacting with autoantibodies in chronic active hepatitis. Hepatology. 1992;16:892–898.

    Article  CAS  PubMed  Google Scholar 

  52. Czaja AJ, Shums Z, Norman GL. Nonstandard antibodies as prognostic markers in autoimmune hepatitis. Autoimmunity. 2004;37:195–201.

    Article  CAS  PubMed  Google Scholar 

  53. Djilali-Saiah I, Fakhfakh A, Louafi H, et al. HLA class II influences humoral autoimmunity in patients with type 2 autoimmune hepatitis. J Hepatol. 2006;45:844–850.

    Article  CAS  PubMed  Google Scholar 

  54. Manns MP, Griffin KJ, Sullivan KF, Johnson EF. LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase. J Clin Invest. 1991;88:1370–1378.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ma Y, Thomas MG, Okamoto M, et al. Key residues of a major cytochrome P4502D6 epitope are located on the surface of the molecule. J Immunol. 2002;169:277–285.

    Article  CAS  PubMed  Google Scholar 

  56. Djilali-Saiah I, Renous R, Caillat-Zucman S, Debray D, Alvarez F. Linkage disequilibrium between HLA class II region and autoimmune hepatitis in pediatric patients. J Hepatol. 2004;40:904–909.

    Article  CAS  PubMed  Google Scholar 

  57. Lapierre P, Hajoui O, Homberg JC, Alvarez F. Formiminotransferase cyclodeaminase is an organ-specific autoantigen recognized by sera of patients with autoimmune hepatitis. Gastroenterology. 1999;116:643–649.

    Article  CAS  PubMed  Google Scholar 

  58. Muratori L, Sztul E, Muratori P, et al. Distinct epitopes on formiminotransferase cyclodeaminase induce autoimmune liver cytosol antibody type 1. Hepatology. 2001;34:494–501.

    Article  CAS  PubMed  Google Scholar 

  59. Czaja AJ, Manns MP. Advances in the diagnosis, pathogenesis and management of autoimmune hepatitis. Gastroenterology. 2010;139:58–72.

    Article  CAS  PubMed  Google Scholar 

  60. Czaja AJ, Doherty DG, Donaldson PT. Genetic bases of autoimmune hepatitis. Dig Dis Sci. 2002;47:2139–2150.

    Article  CAS  PubMed  Google Scholar 

  61. Seki T, Kiyosawa K, Inoko H, Ota M. Association of autoimmune hepatitis with HLA-Bw54 and DR4 in Japanese patients. Hepatology. 1990;12:1300–1304.

    Article  CAS  PubMed  Google Scholar 

  62. Seki T, Ota M, Furuta S, et al. HLA class II molecules and autoimmune hepatitis susceptibility in Japanese patients. Gastroenterology. 1992;103:1041–1047.

    CAS  PubMed  Google Scholar 

  63. Yoshizawa K, Ota M, Katsuyama Y, et al. Genetic analysis of the HLA region of Japanese patients with type 1 autoimmune hepatitis. J Hepatol.. 2005;42:578–584.

    Article  CAS  PubMed  Google Scholar 

  64. Yokosawa S, Yoshizawa K, Ota M, et al. A genomewide DNA microsatellite association study of Japanese patients with autoimmune hepatitis type 1. Hepatology. 2007;45:384–390.

    Article  CAS  PubMed  Google Scholar 

  65. Yoshizawa K, Umemura T, Ota M. Genetic background of autoimmune hepatitis in Japan. J Gastroenterol. 2011;46:42–47.

    Article  CAS  PubMed  Google Scholar 

  66. Qiu DK, Ma X. Relationship between human leukocyte antigen-DRB1 and autoimmune hepatitis type I in Chinese patients. J Gastroenterol Hepatol. 2003;18:63–67.

    Article  CAS  PubMed  Google Scholar 

  67. Vazquez-Garcia MN, Alaez C, Olivo A, et al. MHC class II sequences of susceptibility and protection in Mexicans with autoimmune hepatitis. J Hepatol. 1998;28:985–990.

    Article  CAS  PubMed  Google Scholar 

  68. Lim YS, Oh HB, Choi SE, et al. Susceptibility to type 1 autoimmune hepatitis is associated with shared amino acid sequences at positions 70–74 of the HLA-DRB1 molecule. J Hepatol. 2008;48:133–139.

    Article  CAS  PubMed  Google Scholar 

  69. Fainboim L, Marcos Y, Pando M, et al. Chronic active autoimmune hepatitis in children. Strong association with a particular HLA-DR6 (DRB1*1301) haplotype. Hum Immunol. 1994;41:146–150.

    Article  CAS  PubMed  Google Scholar 

  70. Goldberg AC, Bittencourt PL, Mougin B, et al. Analysis of HLA haplotypes in autoimmune hepatitis type 1: identifying the major susceptibility locus. Hum Immunol. 2001;62:165–169.

    Article  CAS  PubMed  Google Scholar 

  71. Fortes Mdel P, Machado IV, Gil G, et al. Genetic contribution of major histocompatibility complex class II region to type 1 autoimmune hepatitis susceptibility in Venezuela. Liver Int. 2007;27:1409–1416.

    Article  PubMed  CAS  Google Scholar 

  72. Duarte-Rey C, Pardo AL, Rodriguez-Velosa Y, et al. HLA class II association with autoimmune hepatitis in Latin America: a meta-analysis. Autoimmun Rev. 2009;8:325–331.

    Article  CAS  PubMed  Google Scholar 

  73. Goldberg AC, Bittencourt PL, Oliveira LC, et al. Autoimmune hepatitis in Brazil: an overview. Scand J Immunol. 2007;66:208–216.

    Article  CAS  PubMed  Google Scholar 

  74. Ma Y, Bogdanos DP, Hussain MJ, et al. Polyclonal T-cell responses to cytochrome P450IID6 are associated with disease activity in autoimmune hepatitis type 2. Gastroenterology. 2006;130:868–882.

    Article  CAS  PubMed  Google Scholar 

  75. Czaja AJ, Kruger M, Santrach PJ, Moore SB, Manns MP. Genetic distinctions between types 1 and 2 autoimmune hepatitis. Am J Gastroenterol.. 1997;92:2197–2200.

    CAS  PubMed  Google Scholar 

  76. Jurado A, Cardaba B, Jara P, et al. Autoimmune hepatitis type 2 and hepatitis C virus infection: study of HLA antigens. J Hepatol. 1997;26:983–991.

    Article  CAS  PubMed  Google Scholar 

  77. Donaldson PT, Czaja AJ. Genetic effects on susceptibility, clinical expression, and treatment outcome of type 1 autoimmune hepatitis. Clin Liver Dis. 2002;6:707–725.

    Article  PubMed  Google Scholar 

  78. Donaldson PT. Genetics in autoimmune hepatitis. Semin Liver Dis. 2002;22:353–364.

    Article  CAS  PubMed  Google Scholar 

  79. Wang P, Su H, Underhill J, et al. Autoantibody and human leukocyte antigen profiles in children with autoimmune liver disease and their first-degree relatives. J Pediatr Gastroenterol Nutr. 2014;58:457–462.

    Article  CAS  PubMed  Google Scholar 

  80. Findor JA, Sorda JA, Daruich JR, Manero EF. Familial association in autoimmune liver disease. Medicina (B Aires). 2002;62:241–244.

    Google Scholar 

  81. van Gerven NM, Verwer BJ, Witte BI, et al. Epidemiology and clinical characteristics of autoimmune hepatitis in the Netherlands. Scand J Gastroenterol. 2014;49:1245–1254.

    Article  PubMed  CAS  Google Scholar 

  82. Hardtke-Wolenski M, Fischer K, Noyan F, et al. Genetic predisposition and environmental danger signals initiate chronic autoimmune hepatitis driven by CD4(+) T cells. Hepatology. 2013;58:718–728.

    Article  CAS  PubMed  Google Scholar 

  83. Tang J, Zhou C, Zhang ZJ, Zheng SS. Association of polymorphisms in non-classic MHC genes with susceptibility to autoimmune hepatitis. Hepatobiliary Pancreat Dis Int. 2012;11:125–131.

    Article  CAS  PubMed  Google Scholar 

  84. Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology. 2000;31:49–53.

    Article  CAS  PubMed  Google Scholar 

  85. Djilali-Saiah I, Ouellette P, Caillat-Zucman S, et al. CTLA-4/CD 28 region polymorphisms in children from families with autoimmune hepatitis. Hum Immunol. 2001;62:1356–1362.

    Article  CAS  PubMed  Google Scholar 

  86. Hiraide A, Imazeki F, Yokosuka O, et al. Fas polymorphisms influence susceptibility to autoimmune hepatitis. Am J Gastroenterol. 2005;100:1322–1329.

    Article  CAS  PubMed  Google Scholar 

  87. Agarwal K, Czaja AJ, Donaldson PT. A functional Fas promoter polymorphism is associated with a severe phenotype in type 1 autoimmune hepatitis characterized by early development of cirrhosis. Tissue Antigens. 2007;69:227–235.

    Article  CAS  PubMed  Google Scholar 

  88. Cookson S, Constantini PK, Clare M, et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology. 1999;30:851–856.

    Article  CAS  PubMed  Google Scholar 

  89. Czaja AJ, Cookson S, Constantini PK, et al. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology. 1999;117:645–652.

    Article  CAS  PubMed  Google Scholar 

  90. Li S, Huang X, Zhong H, et al. Tumour necrosis factor alpha (TNF-alpha) genetic polymorphisms and the risk of autoimmune liver disease: a meta-analysis. J Genet. 2013;92:617–628.

    Article  CAS  PubMed  Google Scholar 

  91. Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.

    Article  CAS  PubMed  Google Scholar 

  92. Fan L, Tu X, Zhu Y, et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.

    Article  CAS  PubMed  Google Scholar 

  93. Migita K, Nakamura M, Abiru S, et al. Association of STAT4 polymorphisms with susceptibility to type-1 autoimmune hepatitis in the Japanese population. PLoS One. 2013;8:e71382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Paladino N, Flores AC, Fainboim H, et al. The most severe forms of type I autoimmune hepatitis are associated with genetically determined levels of TGF-beta1. Clin Immunol. 2010;134:305–312.

    Article  CAS  PubMed  Google Scholar 

  95. Fan LY, Tu XQ, Zhu Y, et al. Genetic association of cytokines polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. World J Gastroenterol. 2005;11:2768–2772.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Bittencourt PL, Palacios SA, Cancado EL, et al. Autoimmune hepatitis in Brazilian patients is not linked to tumor necrosis factor alpha polymorphisms at position-308. J Hepatol. 2001;35:24–28.

    Article  CAS  PubMed  Google Scholar 

  97. Bittencourt PL, Palacios SA, Cancado EL, et al. Cytotoxic T lymphocyte antigen-4 gene polymorphisms do not confer susceptibility to autoimmune hepatitis types 1 and 2 in Brazil. Am J Gastroenterol. 2003;98:1616–1620.

    CAS  PubMed  Google Scholar 

  98. Schott E, Witt H, Pascu M, et al. Association of CTLA4 single nucleotide polymorphisms with viral but not autoimmune liver disease. Eur J Gastroenterol Hepatol. 2007;19:947–951.

    Article  CAS  PubMed  Google Scholar 

  99. Umemura T, Ota M, Yoshizawa K, et al. Association of cytotoxic T-lymphocyte antigen 4 gene polymorphisms with type 1 autoimmune hepatitis in Japanese. Hepatol Res. 2008;38:689–695.

    Article  CAS  PubMed  Google Scholar 

  100. van Gerven NM, de Boer YS, Zwiers A, et al. Cytotoxic T lymphocyte antigen-4 +49A/G polymorphism does not affect susceptibility to autoimmune hepatitis. Liver Int. 2013;33:1039–1043.

    Article  PubMed  CAS  Google Scholar 

  101. Mells GF, Kaser A, Karlsen TH. Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun. 2013;46:41–54.

    Article  CAS  PubMed  Google Scholar 

  102. Lapierre P, Beland K, Djilali-Saiah I, Alvarez F. Type 2 autoimmune hepatitis murine model: the influence of genetic background in disease development. J Autoimmun. 2006;26:82–89.

    Article  CAS  PubMed  Google Scholar 

  103. Li Y, He X, Schembri-King J, Jakes S, Hayashi J. Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J Immunol. 2000;164:5199–5206.

    Article  CAS  PubMed  Google Scholar 

  104. Westra HJ, Peters MJ, Esko T, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238–1243.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Blonska M, Lin X. NF-kappaB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;21:55–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Agarwal K, Jones DE, Daly AK, et al. CTLA-4 gene polymorphism confers susceptibility to primary biliary cirrhosis. J Hepatol. 2000;32:538–541.

    Article  CAS  PubMed  Google Scholar 

  107. Juran BD, Atkinson EJ, Schlicht EM, Fridley BL, Lazaridis KN. Primary biliary cirrhosis is associated with a genetic variant in the 3′ flanking region of the CTLA4 gene. Gastroenterology. 2008;135:1200–1206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Fainboim L, Canero Velasco MC, Marcos CY, et al. Protracted, but not acute, hepatitis A virus infection is strongly associated with HLA-DRB*1301, a marker for pediatric autoimmune hepatitis. Hepatology. 2001;33:1512–1517.

    Article  CAS  PubMed  Google Scholar 

  109. Elfaramawy AA, Elhossiny RM, Abbas AA, Aziz HM. HLA-DRB1 as a risk factor in children with autoimmune hepatitis and its relation to hepatitis A infection. Ital J Pediatr. 2010;36:73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Doherty DG, Penzotti JE, Koelle DM, et al. Structural basis of specificity and degeneracy of T cell recognition: pluriallelic restriction of T cell responses to a peptide antigen involves both specific and promiscuous interactions between the T cell receptor, peptide, and HLA-DR. J Immunol. 1998;161:3527–3535.

    CAS  PubMed  Google Scholar 

  111. Corper AL, Stratmann T, Apostolopoulos V, et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science. 2000;288:505–511.

    Article  CAS  PubMed  Google Scholar 

  112. Penzotti JE, Doherty D, Lybrand TP, Nepom GT. A structural model for TCR recognition of the HLA class II shared epitope sequence implicated in susceptibility to rheumatoid arthritis. J Autoimmun. 1996;9:287–293.

    Article  CAS  PubMed  Google Scholar 

  113. Garcia KC, Degano M, Pease LR, et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science. 1998;279:1166–1172.

    Article  CAS  PubMed  Google Scholar 

  114. Czaja AJ, Donaldson PT. Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis. Immunol Rev. 2000;174:250–259.

    Article  CAS  PubMed  Google Scholar 

  115. Doherty DG, Donaldson PT, Underhill JA, et al. Allelic sequence variation in the HLA class II genes and proteins in patients with autoimmune hepatitis. Hepatology. 1994;19:609–615.

    Article  CAS  PubMed  Google Scholar 

  116. Garboczi DN, Ghosh P, Utz U, et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature. 1996;384:134–141.

    Article  CAS  PubMed  Google Scholar 

  117. Garcia KC, Degano M, Stanfield RL, et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science. 1996;274:209–219.

    Article  CAS  PubMed  Google Scholar 

  118. Oldstone MB. Molecular mimicry and immune-mediated diseases. FASEB J. 1998;12:1255–1265.

    CAS  PubMed  Google Scholar 

  119. Christen U, Holdener M, Hintermann E. Cytochrome P450 2D6 as a model antigen. Dig Dis. 2010;28:80–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Manns M, Zanger U, Gerken G, et al. Patients with type II autoimmune hepatitis express functionally intact cytochrome P-450 db1 that is inhibited by LKM-1 autoantibodies in vitro but not in vivo. Hepatology. 1990;12:127–132.

    Article  CAS  PubMed  Google Scholar 

  121. Lohr H, Manns M, Kyriatsoulis A, et al. Clonal analysis of liver-infiltrating T cells in patients with LKM-1 antibody-positive autoimmune chronic active hepatitis. Clin Exp Immunol. 1991;84:297–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Lapierre P, Djilali-Saiah I, Vitozzi S, Alvarez F. A murine model of type 2 autoimmune hepatitis: xenoimmunization with human antigens. Hepatology. 2004;39:1066–1074.

    Article  CAS  PubMed  Google Scholar 

  123. Holdener M, Hintermann E, Bayer M, et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med. 2008;205:1409–1422.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Gueguen P, Dalekos G, Nousbaum JB, et al. Double reactivity against actin and alpha-actinin defines a severe form of autoimmune hepatitis type 1. J Clin Immunol. 2006;26:495–505.

    Article  PubMed  CAS  Google Scholar 

  125. Oikonomou KG, Zachou K, Dalekos GN. Alpha-actinin: a multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun Rev. 2011;10:389–396.

    Article  CAS  PubMed  Google Scholar 

  126. Zachou K, Oikonomou K, Renaudineau Y, et al. Anti-alpha actinin antibodies as new predictors of response to treatment in autoimmune hepatitis type 1. Aliment Pharmacol Ther. 2012;35:116–125.

    Article  CAS  PubMed  Google Scholar 

  127. Treichel U, Poralla T, Hess G, Manns M, Meyer zum Buschenfelde KH. Autoantibodies to human asialoglycoprotein receptor in autoimmune-type chronic hepatitis. Hepatology. 1990;11:606–612.

    Article  CAS  PubMed  Google Scholar 

  128. Czaja AJ, Pfeifer KD, Decker RH, Vallari AS. Frequency and significance of antibodies to asialoglycoprotein receptor in type 1 autoimmune hepatitis. Dig Dis Sci. 1996;41:1733–1740.

    Article  CAS  PubMed  Google Scholar 

  129. Rigopoulou EI, Roggenbuck D, Smyk DS, et al. Asialoglycoprotein receptor (ASGPR) as target autoantigen in liver autoimmunity: lost and found. Autoimmun Rev. 2012;12:260–269.

    Article  CAS  PubMed  Google Scholar 

  130. Costa M, Rodriguez-Sanchez JL, Czaja AJ, Gelpi C. Isolation and characterization of cDNA encoding the antigenic protein of the human tRNP(Ser)Sec complex recognized by autoantibodies from patients with type-1 autoimmune hepatitis. Clin Exp Immunol. 2000;121:364–374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Volkmann M, Martin L, Baurle A, et al. Soluble liver antigen: isolation of a 35-kd recombinant protein (SLA-p35) specifically recognizing sera from patients with autoimmune hepatitis. Hepatology. 2001;33:591–596.

    Article  CAS  PubMed  Google Scholar 

  132. Volkmann M, Luithle D, Zentgraf H, et al. SLA/LP/tRNP((Ser)Sec) antigen in autoimmune hepatitis: identification of the native protein in human hepatic cell extract. J Autoimmun. 2010;34:59–65.

    Article  CAS  PubMed  Google Scholar 

  133. Obermayer-Straub P, Manns MP. Cytochrome P450 enzymes and UDP-glucuronosyltransferases as hepatocellular autoantigens. Mol Biol Rep. 1996;23:235–242.

    Article  CAS  PubMed  Google Scholar 

  134. Manns MP, Obermayer-Straub P. Cytochromes P450 and uridine triphosphate-glucuronosyltransferases: model autoantigens to study drug-induced, virus-induced, and autoimmune liver disease. Hepatology. 1997;26:1054–1066.

    Article  CAS  PubMed  Google Scholar 

  135. Preuss B, Berg C, Dengjel J, Stevanovic S, Klein R. Relevance of the inner mitochondrial membrane enzyme F1F0-ATPase as an autoantigen in autoimmune liver disorders. Liver Int. 2012;32:249–257.

    Article  CAS  PubMed  Google Scholar 

  136. Song Q, Liu G, Hu S, et al. Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. J Proteome Res. 2010;9:30–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Wu L, Song G. Identification of new autoimmune hepatitis-specific autoantigens by using protein microarray technology. Methods Mol Biol. 2012;909:227–239.

    CAS  PubMed  Google Scholar 

  138. Tahiri F, Le Naour F, Huguet S, et al. Identification of plasma membrane autoantigens in autoimmune hepatitis type 1 using a proteomics tool. Hepatology. 2008;47:937–948.

    Article  CAS  PubMed  Google Scholar 

  139. Zingaretti C, Arigo M, Cardaci A, et al. Identification of new autoantigens by protein array indicates a role for IL4 neutralization in autoimmune hepatitis. Mol Cell Proteomics. 2012;11:1885–1897.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Yamamoto AM, Cresteil D, Boniface O, Clerc FF, Alvarez F. Identification and analysis of cytochrome P450IID6 antigenic sites recognized by anti-liver-kidney microsome type-1 antibodies (LKM1). Eur J Immunol. 1993;23:1105–1111.

    Article  CAS  PubMed  Google Scholar 

  141. Kerkar N, Choudhuri K, Ma Y, et al. Cytochrome P4502D6(193-212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease. J Immunol. 2003;170:1481–1489.

    Article  CAS  PubMed  Google Scholar 

  142. Mizutani T, Shinoda M, Tanaka Y, et al. Autoantibodies against CYP2D6 and other drug-metabolizing enzymes in autoimmune hepatitis type 2. Drug Metab Rev. 2005;37:235–252.

    Article  CAS  PubMed  Google Scholar 

  143. Lunel F, Abuaf N, Frangeul L, et al. Liver/kidney microsome antibody type 1 and hepatitis C virus infection. Hepatology. 1992;16:630–636.

    Article  CAS  PubMed  Google Scholar 

  144. Vento S, Garofano T, Di Perri G, et al. Identification of hepatitis A virus as a trigger for autoimmune chronic hepatitis type 1 in susceptible individuals. Lancet. 1991;337:1183–1187.

    Article  CAS  PubMed  Google Scholar 

  145. Huppertz HI, Treichel U, Gassel AM, Jeschke R. Meyer zum Buschenfelde KH. Autoimmune hepatitis following hepatitis A virus infection. J Hepatol. 1995;23:204–208.

    Article  CAS  PubMed  Google Scholar 

  146. Tanaka H, Tujioka H, Ueda H, et al. Autoimmune hepatitis triggered by acute hepatitis A. World J Gastroenterol. 2005;11:6069–6071.

    Article  PubMed Central  PubMed  Google Scholar 

  147. Tabak F, Ozdemir F, Tabak O, et al. Autoimmune hepatitis induced by the prolonged hepatitis A virus infection. Ann Hepatol. 2008;7:177–179.

    PubMed  Google Scholar 

  148. Laskus T, Slusarczyk J. Autoimmune chronic active hepatitis developing after acute type B hepatitis. Dig Dis Sci.. 1989;34:1294–1297.

    Article  CAS  PubMed  Google Scholar 

  149. Magrin S, Craxi A, Fabiano C, et al. Hepatitis C virus replication in ‘autoimmune’ chronic hepatitis. J Hepatol. 1991;13:364–367.

    Article  CAS  PubMed  Google Scholar 

  150. Magrin S, Craxi A, Fiorentino G, et al. Is autoimmune chronic active hepatitis a HCV-related disease? J Hepatol. 1991;13:56–60.

    Article  CAS  PubMed  Google Scholar 

  151. Vento S, Cainelli F, Renzini C, Concia E. Autoimmune hepatitis type 2 induced by HCV and persisting after viral clearance. Lancet. 1997;350:1298–1299.

    Article  CAS  PubMed  Google Scholar 

  152. Robertson DA, Zhang SL, Guy EC, Wright R. Persistent measles virus genome in autoimmune chronic active hepatitis. Lancet. 1987;2:9–11.

    Article  CAS  PubMed  Google Scholar 

  153. Kalland KH, Endresen C, Haukenes G, Schrumpf E. Measles-specific nucleotide sequences and autoimmune chronic active hepatitis. Lancet. 1989;1:1390–1391.

    Article  CAS  PubMed  Google Scholar 

  154. Al-Hamoudi WK. Severe autoimmune hepatitis triggered by varicella zoster infection. World J Gastroenterol. 2009;15:1004–1006.

    Article  PubMed Central  PubMed  Google Scholar 

  155. Kojima K, Nagayama R, Hirama S, et al. Epstein–Barr virus infection resembling autoimmune hepatitis with lactate dehydrogenase and alkaline phosphatase anomaly. J Gastroenterol. 1999;34:706–712.

    Article  CAS  PubMed  Google Scholar 

  156. Chiba T, Goto S, Yokosuka O, et al. Fatal chronic active Epstein-Barr virus infection mimicking autoimmune hepatitis. Eur J Gastroenterol Hepatol. 2004;16:225–228.

    Article  PubMed  Google Scholar 

  157. Sevilla J, del Carmen Escudero M, Jimenez R, et al. Severe systemic autoimmune disease associated with Epstein–Barr virus infection. J Pediatr Hematol Oncol. 2004;26:831–833.

    Article  PubMed  Google Scholar 

  158. Czaja AJ, Carpenter HA, Santrach PJ, et al. Evidence against hepatitis viruses as important causes of severe autoimmune hepatitis in the United States. J Hepatol. 1993;18:342–352.

    Article  CAS  PubMed  Google Scholar 

  159. Christen U, Hintermann E, Holdener M, von Herrath MG. Viral triggers for autoimmunity: is the ‘glass of molecular mimicry’ half full or half empty? J Autoimmun. 2010;34:38–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Vogel A, Manns MP, Strassburg CP. Autoimmunity and viruses. Clin Liver Dis. 2002;6:739–753.

    Article  PubMed  Google Scholar 

  161. Czaja AJ. Autoimmune hepatitis and viral infection. Gastroenterol Clin North Am. 1994;23:547–566.

    CAS  PubMed  Google Scholar 

  162. Vento S, Di Perri G, Garofano T, et al. Hazards of interferon therapy for HBV-seronegative chronic hepatitis. Lancet. 1989;2:926.

    Article  CAS  PubMed  Google Scholar 

  163. Shindo M, Di Bisceglie AM, Hoofnagle JH. Acute exacerbation of liver disease during interferon alfa therapy for chronic hepatitis C. Gastroenterology. 1992;102:1406–1408.

    CAS  PubMed  Google Scholar 

  164. Efe C, Heurgue-Berlot A, Ozaslan E, et al. Late autoimmune hepatitis after hepatitis C therapy. Eur J Gastroenterol Hepatol. 2013;25:1308–1311.

    Article  CAS  PubMed  Google Scholar 

  165. Rosen A, Casciola-Rosen L. Autoantigens in systemic autoimmunity: critical partner in pathogenesis. J Intern Med. 2009;265:625–631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver. 2001;21:272–279.

    Article  CAS  PubMed  Google Scholar 

  167. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002;2:965–975.

    Article  CAS  PubMed  Google Scholar 

  168. Bai J, Odin JA. Apoptosis and the liver: relation to autoimmunity and related conditions. Autoimmun Rev. 2003;2:36–42.

    Article  PubMed  Google Scholar 

  169. Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38:1188–1198.

    Article  CAS  PubMed  Google Scholar 

  170. A-Gonzalez N, Bensinger SJ, Hong C, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity. 2009;31:245–258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Kahraman A, Gerken G, Canbay A. Apoptosis in immune-mediated liver diseases. Dig Dis. 2010;28:144–149.

    Article  PubMed  CAS  Google Scholar 

  172. Czaja AJ. Targeting apoptosis in autoimmune hepatitis. Dig Dis Sci. 2014;59:2890–2904.

    Article  CAS  PubMed  Google Scholar 

  173. Czaja AJ. Autoantibodies in autoimmune liver disease. Adv Clin Chem. 2005;40:127–164.

    Article  CAS  PubMed  Google Scholar 

  174. Czaja AJ. Autoantibodies as prognostic markers in autoimmune liver disease. Dig Dis Sci. 2010;55:2144–2161.

    Article  CAS  PubMed  Google Scholar 

  175. Zhang WC, Zhao FR, Chen J, Chen WX. Meta-analysis: diagnostic accuracy of antinuclear antibodies, smooth muscle antibodies and antibodies to a soluble liver antigen/liver pancreas in autoimmune hepatitis. PLoS One. 2014;9:e92267.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  176. Bogdanos DP, Choudhuri K, Vergani D. Molecular mimicry and autoimmune liver disease: virtuous intentions, malign consequences. Liver. 2001;21:225–232.

    Article  CAS  PubMed  Google Scholar 

  177. Bowen DG. Of mice and molecular mimicry: modeling autoimmune hepatitis. Hepatology. 2008;48:1013–1015.

    Article  PubMed  Google Scholar 

  178. Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med. 1999;341:2068–2074.

    Article  CAS  PubMed  Google Scholar 

  179. Kammer AR, van der Burg SH, Grabscheid B, et al. Molecular mimicry of human cytochrome P450 by hepatitis C virus at the level of cytotoxic T cell recognition. J Exp Med. 1999;190:169–176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Rose NR, Mackay IR. Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci.. 2000;57:542–551.

    Article  CAS  PubMed  Google Scholar 

  181. Djilali-Saiah I, Lapierre P, Vittozi S, Alvarez F. DNA vaccination breaks tolerance for a neo-self antigen in liver: a transgenic murine model of autoimmune hepatitis. J Immunol. 2002;169:4889–4896.

    Article  PubMed  Google Scholar 

  182. Hintermann E, Holdener M, Bayer M, et al. Epitope spreading of the anti-CYP2D6 antibody response in patients with autoimmune hepatitis and in the CYP2D6 mouse model. J Autoimmun. 2011;37:242–253.

    Article  CAS  PubMed  Google Scholar 

  183. Ehser J, Holdener M, Christen S, et al. Molecular mimicry rather than identity breaks T-cell tolerance in the CYP2D6 mouse model for human autoimmune hepatitis. J Autoimmun. 2013;42:39–49.

    Article  CAS  PubMed  Google Scholar 

  184. Christen U, von Herrath MG. Induction, acceleration or prevention of autoimmunity by molecular mimicry. Mol Immunol. 2004;40:1113–1120.

    Article  CAS  PubMed  Google Scholar 

  185. Bjornsson E, Talwalkar J, Treeprasertsuk S, et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology. 2010;51:2040–2048.

    Article  PubMed  Google Scholar 

  186. Bjornsson E, Davidsdottir L. The long-term follow-up after idiosyncratic drug-induced liver injury with jaundice. J Hepatol. 2009;50:511–517.

    Article  PubMed  Google Scholar 

  187. Kaymakoglu S. Drug-induced hepatitis, drug-induced autoimmunity or classical autoimmune hepatitis: how can we differentiate? Turk J Gastroenterol. 2004;15:123–125.

    PubMed  Google Scholar 

  188. Huang YS, Chern HD, Su WJ, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology.. 2003;37:924–930.

    Article  CAS  PubMed  Google Scholar 

  189. Vuilleumier N, Rossier MF, Chiappe A, et al. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol. 2006;62:423–429.

    Article  CAS  PubMed  Google Scholar 

  190. Daly AK, Aithal GP, Leathart JB, et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology. 2007;132:272–281.

    Article  CAS  PubMed  Google Scholar 

  191. Lucena MI, Andrade RJ, Martinez C, et al. Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology. 2008;48:588–596.

    Article  PubMed  Google Scholar 

  192. Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis. 2009;29:400–411.

    Article  CAS  PubMed  Google Scholar 

  193. Lucena MI, Garcia-Martin E, Andrade RJ, et al. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology. 2010;52:303–312.

    Article  CAS  PubMed  Google Scholar 

  194. Russmann S, Jetter A, Kullak-Ublick GA. Pharmacogenetics of drug-induced liver injury. Hepatology. 2010;52:748–761.

    Article  CAS  PubMed  Google Scholar 

  195. Liu ZX, Kaplowitz N. Immune-mediated drug-induced liver disease. Clin Liver Dis. 2002;6:755–774.

    Article  PubMed  Google Scholar 

  196. Lecoeur S, Andre C, Beaune PH. Tienilic acid-induced autoimmune hepatitis: anti-liver and-kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol Pharmacol. 1996;50:326–333.

    CAS  PubMed  Google Scholar 

  197. Tay S, Le H, Ford KA, et al. Mechanistic studies of the cationic binding pocket of CYP2C9 in vitro and in silico: metabolism of nonionizable analogs of tienilic acid. Drug Metab Dispos. 2014;42:1955–1963.

    Article  PubMed  CAS  Google Scholar 

  198. Obermayer-Straub P, Perheentupa J, Braun S, et al. Hepatic autoantigens in patients with autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. Gastroenterology. 2001;121:668–677.

    Article  CAS  PubMed  Google Scholar 

  199. Hardtke-Wolenski M, Taubert R, Noyan F, et al. Autoimmune hepatitis in a murine APS-1 model is directed against multiple autoantigens. Hepatology. 2014. doi:10.1002/hep.27639.

    PubMed  Google Scholar 

  200. Bourdi M, Tinel M, Beaune PH, Pessayre D. Interactions of dihydralazine with cytochromes P4501A: a possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol Pharmacol. 1994;45:1287–1295.

    CAS  PubMed  Google Scholar 

  201. Zimmerman HJ. Drug-induced liver disease. Clin Liver Dis. 2000;4:73–96, vi.

  202. Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16:3041–3053.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Beaune PH, Bourdi M. Autoantibodies against cytochromes P-450 in drug-induced autoimmune hepatitis. Ann N Y Acad Sci. 1993;685:641–645.

    Article  CAS  PubMed  Google Scholar 

  204. Dansette PM, Bonierbale E, Minoletti C, et al. Drug-induced immunotoxicity. Eur J Drug Metab Pharmacokinet. 1998;23:443–451.

    Article  CAS  PubMed  Google Scholar 

  205. Liebler DC, Guengerich FP. Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov. 2005;4:410–420.

    Article  CAS  PubMed  Google Scholar 

  206. Robin MA, Le Roy M, Descatoire V, Pessayre D. Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug-induced hepatitis. J Hepatol. 1997;26:23–30.

    Article  CAS  PubMed  Google Scholar 

  207. Heurgue-Berlot A, Bernard-Chabert B, Diebold MD, Thiefin G. Drug-induced autoimmune-like hepatitis: a case of chronic course after drug withdrawal. Dig Dis Sci. 2011;56:2504–2505.

    Article  PubMed  Google Scholar 

  208. Rieder MJ, Shear NH, Kanee A, Tang BK, Spielberg SP. Prominence of slow acetylator phenotype among patients with sulfonamide hypersensitivity reactions. Clin Pharmacol Ther. 1991;49:13–17.

    Article  CAS  PubMed  Google Scholar 

  209. Uetrecht J. Idiosyncratic drug reactions: past, present, and future. Chem Res Toxicol. 2008;21:84–92.

    Article  CAS  PubMed  Google Scholar 

  210. Bourdi M, Larrey D, Nataf J, et al. Anti-liver endoplasmic reticulum autoantibodies are directed against human cytochrome P-450IA2. A specific marker of dihydralazine-induced hepatitis. J Clin Invest. 1990;85:1967–1973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Beaune PH, Lecoeur S, Bourdi M, et al. Anti-cytochrome P450 autoantibodies in drug-induced disease. Eur J Haematol Suppl. 1996;60:89–92.

    CAS  PubMed  Google Scholar 

  212. Proctor WR, Chakraborty M, Fullerton AM, et al. Thymic stromal lymphopoietin and interleukin-4 mediate the pathogenesis of halothane-induced liver injury in mice. Hepatology.. 2014;60:1741–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kurth MJ, Yokoi T, Gershwin ME. Halothane-induced hepatitis: paradigm or paradox for drug-induced liver injury. Hepatology. 2014;60:1473–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun. 2010;34:45–54.

    Article  CAS  PubMed  Google Scholar 

  215. Czaja AJ. Review article: chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther. 2014;40:261–279.

    Article  CAS  PubMed  Google Scholar 

  216. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577 e571–594 e571.

    Article  CAS  Google Scholar 

  217. Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. Sem Liver Dis. 2010;30:215–225.

    Article  CAS  Google Scholar 

  218. Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13:272–280.

    Article  CAS  PubMed  Google Scholar 

  219. Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev. 2009;8:379–383.

    Article  CAS  PubMed  Google Scholar 

  220. Lei Y, Takahama Y. XCL1 and XCR1 in the immune system. Microbes Infect. 2012;14:262–267.

    Article  CAS  PubMed  Google Scholar 

  221. Nishioji K, Okanoue T, Itoh Y, et al. Increase of chemokine interferon-inducible protein-10 (IP-10) in the serum of patients with autoimmune liver diseases and increase of its mRNA expression in hepatocytes. Clin Exp Immunol. 2001;123:271–279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Li YL, Liu N, Zhao DT, et al. Investigate circulating levels of chemokines and evaluate the correlation between these chemokines and liver function indicators in autoimmune hepatitis. Zhonghua Gan Zang Bing Za Zhi. 2013;21:299–303.

    PubMed  Google Scholar 

  223. Ikeda A, Aoki N, Kido M, et al. Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice. Hepatology. 2014;60:224–236.

    Article  CAS  PubMed  Google Scholar 

  224. Manousou P, Kolios G, Drygiannakis I, et al. CXCR3 axis in patients with primary biliary cirrhosis: a possible novel mechanism of the effect of ursodeoxycholic acid. Clin Exp Immunol. 2013;172:9–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Oo YH, Banz V, Kavanagh D, et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol. 2012;57:1044–1051.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Garcia-Lopez MA, Sanchez-Madrid F, Rodriguez-Frade JM, et al. CXCR3 chemokine receptor distribution in normal and inflamed tissues: expression on activated lymphocytes, endothelial cells, and dendritic cells. Lab Invest. 2001;81:409–418.

    Article  CAS  PubMed  Google Scholar 

  227. Saeki C, Nakano M, Takahashi H, et al. Accumulation of functional regulatory T cells in actively inflamed liver in mouse dendritic cell-based autoimmune hepatic inflammation. Clin Immunol. 2010;135:156–166.

    Article  CAS  PubMed  Google Scholar 

  228. Landi A, Weismuller TJ, Lankisch TO, et al. Differential serum levels of eosinophilic eotaxins in primary sclerosing cholangitis, primary biliary cirrhosis, and autoimmune hepatitis. J Interferon Cytokine Res. 2014;34:204–214.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  229. Kitaura M, Suzuki N, Imai T, et al. Molecular cloning of a novel human CC chemokine (Eotaxin-3) that is a functional ligand of CC chemokine receptor 3. J Biol Chem. 1999;274:27975–27980.

    Article  CAS  PubMed  Google Scholar 

  230. Xu HB, Gong YP, Cheng J, Chu YW, Xiong SD. CXCL16 participates in pathogenesis of immunological liver injury by regulating T lymphocyte infiltration in liver tissue. World J Gastroenterol. 2005;11:4979–4985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  231. Hintermann E, Bayer M, Pfeilschifter JM, Luster AD, Christen U. CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell inactivation. J Autoimmun. 2010;35:424–435.

    Article  CAS  PubMed  Google Scholar 

  232. Yellin M, Paliienko I, Balanescu A, et al. A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human anti-CXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64:1730–1739.

    Article  CAS  PubMed  Google Scholar 

  233. Berres ML, Koenen RR, Rueland A, et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest. 2010;120:4129–4140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Costantini S, Raucci R, Colonna G, et al. Peptides targeting chemokine receptor CXCR4: structural behavior and biological binding studies. J Pept Sci. 2014. doi:10.1002/psc.2614.

  235. Crescioli C, Cosmi L, Borgogni E, et al. Methimazole inhibits CXC chemokine ligand 10 secretion in human thyrocytes. J Endocrinol. 2007;195:145–155.

    Article  CAS  PubMed  Google Scholar 

  236. Lee JW, Bajwa PJ, Carson MJ, et al. Fenofibrate represses interleukin-17 and interferon-gamma expression and improves colitis in interleukin-10-deficient mice. Gastroenterology. 2007;133:108–123.

    Article  CAS  PubMed  Google Scholar 

  237. Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun.. 2013;46:97–111.

    Article  CAS  PubMed  Google Scholar 

  238. Montano-Loza AJ, Czaja AJ. Cell mediators of autoimmune hepatitis and their therapeutic implications. Dig Dis Sci. (Epub ahead of print). doi:10.1007/s10620-014-3473-z.

  239. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  240. Mbongue J, Nicholas D, Firek A, Langridge W. The role of dendritic cells in tissue-specific autoimmunity. J Immunol Res. 2014;2014:857143.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  241. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061.

    Article  CAS  PubMed  Google Scholar 

  242. Karim M, Kingsley CI, Bushell AR, Sawitzki BS, Wood KJ. Alloantigen-induced CD25+ CD4+ regulatory T cells can develop in vivo from CD25− CD4+ precursors in a thymus-independent process. J Immunol. 2004;172:923–928.

    Article  CAS  PubMed  Google Scholar 

  243. Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62–68.

    Article  CAS  PubMed  Google Scholar 

  244. Harris SG, Phipps RP. The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis. Eur J Immunol. 2001;31:1098–1105.

    Article  CAS  PubMed  Google Scholar 

  245. Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000;119:466–478.

    Article  CAS  PubMed  Google Scholar 

  246. Fletcher JM, Lonergan R, Costelloe L, et al. CD39+ Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183:7602–7610.

    Article  CAS  PubMed  Google Scholar 

  247. Sebastiani S, Allavena P, Albanesi C, et al. Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity. J Immunol. 2001;166:996–1002.

    Article  CAS  PubMed  Google Scholar 

  248. Longhi MS, Ma Y, Bogdanos DP, et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.

    Article  CAS  PubMed  Google Scholar 

  249. Longhi MS, Ma Y, Mitry RR, et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.

    Article  CAS  PubMed  Google Scholar 

  250. Kido M, Watanabe N, Okazaki T, et al. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology. 2008;135:1333–1343.

    Article  CAS  PubMed  Google Scholar 

  251. Ferri S, Longhi MS, De Molo C, et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology. 2010;52:999–1007.

    Article  CAS  PubMed  Google Scholar 

  252. Peiseler M, Sebode M, Franke B, et al. FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol. 2012;57:125–132.

    Article  CAS  PubMed  Google Scholar 

  253. Longhi MS, Ma Y, Mieli-Vergani G, Vergani D. Regulatory T cells in autoimmune hepatitis. J Hepatol. 2012;57:932–933.

    Article  CAS  PubMed  Google Scholar 

  254. Peiseler M, Sebode M, Schramm C, Herkel J. Reply to: “Regulatory T cells in autoimmune hepatitis”. J Hepatol.. 2012;57:933–934.

    Article  CAS  Google Scholar 

  255. Muratori L, Longhi MS. The interplay between regulatory and effector T cells in autoimmune hepatitis: implications for innovative treatment strategies. J Autoimmun. 2013;46:74–80.

    Article  CAS  PubMed  Google Scholar 

  256. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.

    Article  CAS  PubMed  Google Scholar 

  257. Swain MG. Hepatic NKT cells: friend or foe? Clin Sci. 2008;114:457–466.

    Article  CAS  PubMed  Google Scholar 

  258. Santodomingo-Garzon T, Swain MG. Role of NKT cells in autoimmune liver disease. Autoimmun Rev. 2011;10:793–800.

    Article  CAS  PubMed  Google Scholar 

  259. Mattner J. Natural killer T (NKT) cells in autoimmune hepatitis. Curr Opin Immunol. 2013;25:697–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  260. Van Kaer L. NKT cells: T lymphocytes with innate effector functions. Curr Opin Immunol. 2007;19:354–364.

    Article  PubMed  CAS  Google Scholar 

  261. Exley MA, Koziel MJ. To be or not to be NKT: natural killer T cells in the liver. Hepatology. 2004;40:1033–1040.

    Article  PubMed  Google Scholar 

  262. Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 2005;3:e113.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  263. Johnston B, Kim CH, Soler D, Emoto M, Butcher EC. Differential chemokine responses and homing patterns of murine TCR alpha beta NKT cell subsets. J Immunol. 2003;171:2960–2969.

    Article  CAS  PubMed  Google Scholar 

  264. Thomas SY, Hou R, Boyson JE, et al. CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J Immunol. 2003;171:2571–2580.

    Article  CAS  PubMed  Google Scholar 

  265. Kumar V. NKT-cell subsets: promoters and protectors in inflammatory liver disease. J Hepatol. 2013;59:618–620.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  266. Zhou D, Mattner J, Cantu C 3rd, et al. Lysosomal glycosphingolipid recognition by NKT cells. Science. 2004;306:1786–1789.

    Article  CAS  PubMed  Google Scholar 

  267. Lalazar G, Preston S, Zigmond E. Ben Yaacov A, Ilan Y. Glycolipids as immune modulatory tools. Mini Rev Med Chem. 2006;6:1249–1253.

    Article  CAS  PubMed  Google Scholar 

  268. Girardi E, Maricic I, Wang J, et al. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat Immunol. 2012;13:851–856.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  269. Swain MG. Natural killer T cells within the liver: conductors of the hepatic immune orchestra. Dig Dis. 2010;28:7–13.

    Article  PubMed  CAS  Google Scholar 

  270. La Cava A, Van Kaer L. Fu Dong S. CD4+ CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol. 2006;27:322–327.

    Article  PubMed  CAS  Google Scholar 

  271. Nakano M, Saeki C, Takahashi H, et al. Activated natural killer T cells producing interferon-gamma elicit promoting activity to murine dendritic cell-based autoimmune hepatic inflammation. Clin Exp Immunol. 2012;170:274–282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Biburger M, Tiegs G. Alpha-galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells. J Immunol. 2005;175:1540–1550.

    Article  CAS  PubMed  Google Scholar 

  273. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13:139–145.

    Article  CAS  PubMed  Google Scholar 

  274. Sprengers D, Sille FC, Derkow K, et al. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen. Gastroenterology. 2008;134:2132–2143.

    Article  PubMed  Google Scholar 

  275. Kaneko Y, Harada M, Kawano T, et al. Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med. 2000;191:105–114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Linsen L, Somers V, Stinissen P. Immunoregulation of autoimmunity by natural killer T cells. Hum Immunol. 2005;66:1193–1202.

    Article  CAS  PubMed  Google Scholar 

  277. Nowak M, Stein-Streilein J. Invariant NKT cells and tolerance. Int Rev Immunol. 2007;26:95–119.

    Article  CAS  PubMed  Google Scholar 

  278. Park O, Jeong WI, Wang L, et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology. 2009;49:1683–1694.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  279. Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11:131–142.

    Article  CAS  PubMed  Google Scholar 

  280. Blomqvist M, Rhost S, Teneberg S, et al. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur J Immunol. 2009;39:1726–1735.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Arrenberg P, Maricic I, Kumar V. Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology. 2011;140:646–655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  282. Halder RC, Aguilera C, Maricic I, Kumar V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest. 2007;117:2302–2312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Joshi SK, Lang ML. Fine tuning a well-oiled machine: influence of NK1.1 and NKG2D on NKT cell development and function. Int Immunopharmacol. 2013;17:260–266.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  284. Zhu R, Diem S, Araujo LM, et al. The Pro-Th1 cytokine IL-12 enhances IL-4 production by invariant NKT cells: relevance for T cell-mediated hepatitis. J Immunol. 2007;178:5435–5442.

    Article  CAS  PubMed  Google Scholar 

  285. Lee KA, Song YC, Kim GY, et al. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells. Eur J Immunol. 2012;42:1685–1694.

    Article  CAS  PubMed  Google Scholar 

  286. Deng ZB, Zhuang X, Ju S, et al. Exosome-like nanoparticles from intestinal mucosal cells carry prostaglandin E2 and suppress activation of liver NKT cells. J Immunol. 2013;190:3579–3589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  287. Kawamura T, Takeda K, Kaneda H, et al. NKG2A inhibits invariant NKT cell activation in hepatic injury. J Immunol. 2009;182:250–258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  288. Vilarinho S, Ogasawara K, Nishimura S, Lanier LL, Baron JL. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci USA. 2007;104:18187–18192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Yoshiga Y, Goto D, Segawa S, et al. Activation of natural killer T cells by alpha-carba-GalCer (RCAI-56), a novel synthetic glycolipid ligand, suppresses murine collagen-induced arthritis. Clin Exp Immunol. 2011;164:236–247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  290. Yang JQ, Kim PJ, Singh RR. Brief treatment with iNKT cell ligand alpha-galactosylceramide confers a long-term protection against lupus. J Clin Immunol. 2012;32:106–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Kadri N, Blomqvist M, Cardell SL. Type II natural killer T cells: a new target for immunomodulation? Expert Rev Clin Immunol. 2008;4:615–627.

    Article  CAS  PubMed  Google Scholar 

  292. Czaja AJ. Current and prospective pharmacotherapy for autoimmune hepatitis. Expert Opin Pharmacother. 2014;15:1715–1736.

    Article  CAS  PubMed  Google Scholar 

  293. Aoki N, Kido M, Iwamoto S, et al. Dysregulated generation of follicular helper T cells in the spleen triggers fatal autoimmune hepatitis in mice. Gastroenterology. 2011;140:1322 e1321–1325 e1321.

    Article  CAS  Google Scholar 

  294. Maruoka R, Aoki N, Kido M, et al. Splenectomy prolongs the effects of corticosteroids in mouse models of autoimmune hepatitis. Gastroenterology. 2013;145:209 e209–220 e209.

    Article  CAS  Google Scholar 

  295. Hammerich L, Tacke F. Role of gamma-delta T cells in liver inflammation and fibrosis. World J Gastrointest Pathophysiol. 2014;5:107–113.

    PubMed Central  PubMed  Google Scholar 

  296. Holtmeier W, Kabelitz D. gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy. 2005;86:151–183.

    Article  CAS  PubMed  Google Scholar 

  297. Born WK, Reardon CL, O’Brien RL. The function of gammadelta T cells in innate immunity. Curr Opin Immunol. 2006;18:31–38.

    Article  CAS  PubMed  Google Scholar 

  298. Morita CT, Mariuzza RA, Brenner MB. Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol. 2000;22:191–217.

    Article  CAS  PubMed  Google Scholar 

  299. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–478.

    Article  CAS  PubMed  Google Scholar 

  300. Wen L, Peakman M, Mieli-Vergani G, Vergani D. Elevation of activated gamma delta T cell receptor bearing T lymphocytes in patients with autoimmune chronic liver disease. Clin Exp Immunol. 1992;89:78–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  301. Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology. 1996;23:988–993.

    CAS  PubMed  Google Scholar 

  302. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol. 1997;151:1205–1213.

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology. 2004;39:273–278.

    Article  PubMed  Google Scholar 

  304. Vergani D, Mieli-Vergani G, Mondelli M, Portmann B, Eddleston AL. Immunoglobulin on the surface of isolated hepatocytes is associated with antibody-dependent cell-mediated cytotoxicity and liver damage. Liver. 1987;7:307–315.

    Article  CAS  PubMed  Google Scholar 

  305. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol. 2014;20:2515–2532.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  306. Czaja AJ. Review article: prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther. 2014;39:385–406.

    Article  CAS  PubMed  Google Scholar 

  307. Sanz-Cameno P, Medina J, Garcia-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis. J Hepatol. 2002;37:723–729.

    Article  CAS  PubMed  Google Scholar 

  308. Beyazit Y, Efe C, Tanoglu A, et al. Nitric oxide is a potential mediator of hepatic inflammation and fibrogenesis in autoimmune hepatitis. Scand J Gastroenterol. 2015;50:204–210.

    Article  CAS  PubMed  Google Scholar 

  309. Pemberton PW, Aboutwerat A, Smith A, et al. Oxidant stress in type I autoimmune hepatitis: the link between necroinflammation and fibrogenesis? Biochim Biophys Acta. 2004;1689:182–189.

    Article  CAS  PubMed  Google Scholar 

  310. Codoner-Franch P, Tavarez-Alonso S, Simo-Jorda R, et al. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J Pediatr. 2012;161:848–854.

    Article  CAS  PubMed  Google Scholar 

  311. Asemi Z, Samimi M, Tabassi Z, Shakeri H, Esmaillzadeh A. Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women. J Nutr. 2013;143:1432–1438.

    Article  CAS  PubMed  Google Scholar 

  312. Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis.. 2007;66:1137–1142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  313. Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37:535–545.

    Article  CAS  PubMed  Google Scholar 

  314. Petta S, Camma C, Scazzone C, et al. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology. 2010;51:1158–1167.

    Article  CAS  PubMed  Google Scholar 

  315. Farnik H, Bojunga J, Berger A, et al. Low vitamin D serum concentration is associated with high levels of hepatitis B virus replication in chronically infected patients. Hepatology. 2013;58:1270–1276.

    Article  CAS  PubMed  Google Scholar 

  316. Trepo E, Ouziel R, Pradat P, et al. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. J Hepatol. 2013;59:344–350.

    Article  CAS  PubMed  Google Scholar 

  317. Dasarathy J, Periyalwar P, Allampati S, et al. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 2014;34:e118–e127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  318. Wong GL, Chan HL, Chan HY, et al. Adverse effects of vitamin D deficiency on outcomes of patients with chronic hepatitis B. Clin Gastroenterol Hepatol. 2015;13:783–790.

    Article  CAS  PubMed  Google Scholar 

  319. Efe C, Kav T, Aydin C, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59:3035–3042.

    Article  CAS  PubMed  Google Scholar 

  320. Beyazit Y, Kocak E, Tanoglu A, Kekilli M. Oxidative stress might play a role in low serum vitamin D associated liver fibrosis among patients with autoimmune hepatitis. Dig Dis Sci. (Epub ahead of print). doi:10.1007/s10620-015-3526-y.

  321. Masuoka HC, Guicciardi ME, Gores GJ. Caspase inhibitors for the treatment of hepatitis C. Clin Liver Dis. 2009;13:467–475.

    Article  PubMed Central  PubMed  Google Scholar 

  322. Anstee QM, Concas D, Kudo H, et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol. 2010;53:542–550.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Czaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaja, A.J. Transitioning from Idiopathic to Explainable Autoimmune Hepatitis. Dig Dis Sci 60, 2881–2900 (2015). https://doi.org/10.1007/s10620-015-3708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3708-7

Keywords

Navigation