Skip to main content
Log in

Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The hydrolysis of nanofibrillated cellulose (NFC), consisting of individual cellulose fibrils, was followed using small-angle scattering techniques in order to reveal changes in the substrate structure caused by cellulose degrading enzymes. In particular, the nanoscale structure of the network of cellulose fibrils was characterized with the combination of small-angle neutron scattering and small-angle x-ray scattering. In the nanocellulose with higher xylan content, the interfibrillar distance was shown to remain unchanged during enzymatic degradation, whereas the distance increased in the nanocellulose with lower xylan content. The limiting effect of xylan on the hydrolysis and a faster hydrolysis of the more thoroughly fibrillated segments of the NFC network could be observed. Despite the extensive fibrillation of the raw material, however, the hydrolysis was eventually limited by the aggregated and heterogeneous structure of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4. doi:10.1186/1754-6834-3-4

    Article  Google Scholar 

  • Bubner P, Dohr J, Plank H, Mayrhofer C, Nidetzky BJ (2012) Cellulases dig deep: in situ observation of the mesoscopic structural dynamics of enzymatic cellulose degradation. J Biol Chem 287:2759–2765. doi:10.1074/jbc.M111.257717

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. doi:10.1146/annurev-chembioeng-061010-114205

    Article  CAS  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Biorefin 5:215–225. doi:10.1002/bbb.269

    Article  CAS  Google Scholar 

  • Horkay F, Hammouda B (2008) Small-angle neutron scattering from typical synthetic and biopolymer solutions. Colloid Polym Sci 286:611–620. doi:10.1007/s00396-008-1849-3

    Article  CAS  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282. doi:10.1126/science.1208386

    Article  CAS  Google Scholar 

  • Jalak J, Väljamäe P (2010) Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 106:871–883. doi:10.1002/bit.22779

    Article  CAS  Google Scholar 

  • Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246. doi:10.1007/s10570-007-9116-1

    Article  CAS  Google Scholar 

  • Kent MS, Cheng G, Murton JK, Carles EL, Dibble DC, Zendejas F, Rodriquez MA, Tran H, Holmes B, Simmons BA, Knierim B, Auer M, Banuelos JL, Urquidi J, Hjelm RP (2010) Study of enzymatic digestion of cellulose by small angle neutron scattering. Biomacromolecules 11:357–368. doi:10.1021/bm9008952

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015. doi:10.1007/s10570-009-9298-9

    Article  Google Scholar 

  • Lindner P (2002) Scattering experiments: experimental aspects, initial data reduction and absolute calibration. In: Lindner P, Zemb T (eds) Neutrons, x-rays and light: scattering methods applied to soft condensed matter. Elsevier, Amsterdam, pp 23–48

  • Lopez-Rubio A, Gilbert EP (2009) Neutron scattering: a natural tool for food science and technology research. Trends Food Sci Technol 20:576–586. doi:10.1016/j.tifs.2009.07.008

    Article  CAS  Google Scholar 

  • Murphy L, Cruys-Bagger N, Damgaard HD, Baumann MJ, Olsen SN, Borch K, Lassen SF, Sweeney M, Tatsumi H, Westh P (2012) Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose. J Biol Chem 287:1252–1260. doi:10.1074/jbc.M111.276485

    Article  CAS  Google Scholar 

  • Penttilä PA, Várnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11:1111–1117. doi:10.1021/bm1001119

    Article  Google Scholar 

  • Penttilä PA, Várnai A, Pere J, Tammelin T, Salmén L, Siika-aho M, Viikari L, Serimaa R (2013) Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour Technol 129:135–141. doi:10.1016/j.biortech.2012.11.017

    Article  Google Scholar 

  • Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000–2007. doi:10.1021/bm100366h

    Article  CAS  Google Scholar 

  • Shibayama M (2011) Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms. Polym J 43:18–34. doi:10.1038/pj.2010.110

    Article  CAS  Google Scholar 

  • Wang L, Zhang Y, Gao P, Shi D, Liu H, Gao H (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93:443–456. doi:10.1002/bit.20730

    Article  CAS  Google Scholar 

  • Waters DJ, Engberg K, Parke-Houben R, Ta CN, Jackson AJ, Toney MF, Frank CW (2011) Structure and mechanism of strength enhancement in interpenetrating polymer network hydrogels. Macromolecules 44:5776–5787. doi:10.1021/ma200693e

    Article  CAS  Google Scholar 

  • Zhou W, Schüttler H-B, Hao Z, Xu Y (2009) Cellulose hydrolysis in evolving substrate morphologies I: a general modeling formalism. Biotechnol Bioeng 104:261–274. doi:10.1002/bit.22389

    Article  CAS  Google Scholar 

  • Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828. doi:10.1016/j.biortech.2007.07.033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank University of Helsinki Research Funds, the Academy of Finland (2105059) and the Finnish Cultural Foundation for financial support. Jaakko Pere from VTT Technical Research Centre of Finland is thanked for providing the nanocellulose substrates for the hydrolysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paavo A. Penttilä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penttilä, P.A., Várnai, A., Fernández, M. et al. Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysis. Cellulose 20, 1031–1040 (2013). https://doi.org/10.1007/s10570-013-9899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9899-1

Keywords

Navigation